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Essential ideas
2.1 Motion

Motion may be described and analysed by the use of graphs and 
equations.

2.2 Forces
Classical physics requires a force to change a state of motion, as 
suggested by Newton in his laws of motion.

2.3 Work, energy, and power
The fundamental concept of energy lays the base upon which all 
areas of science are built.

2.4 Momentum and impulse
Conservation of momentum is an example of a law which is never 
violated.

NATURE OF SCIENCE

From the defi nitions of velocity and acceleration we can use mathematics to derive a 
set of equations that predict the position and velocity of a particle at any given time. 
We can show by experiment that these equations give the correct result for some 
examples, then make the generalization that the equations apply in all cases.

2.1 Motion

2.1 Motion

Understandings, applications, and skills:
Distance and displacement
Speed and velocity

 ● Determining instantaneous and average values for velocity, speed, and acceleration.
Acceleration

 ● Determining the acceleration of free fall experimentally.
Graphs describing motion

 ● Sketching and interpreting motion graphs.
Equations of motion for uniform acceleration

 ● Solving problems using equations of motion for uniform acceleration.
Projectile motion

 ● Analysing projectile motion, including the resolution of vertical and horizontal components of 
acceleration, velocity, and displacement.

Guidance
 ● Calculations will be restricted to those neglecting air resistance. 
 ● Projectile motion will only involve problems using a constant value of g close to the surface of 
the Earth.

 ● The equation of the path of a projectile will not be required.
Fluid resistance and terminal speed

 ● Qualitatively describing the effect of fl uid resistance on falling objects or projectiles, including 
reaching terminal speed. 

In Chapter 1, we observed that things move and now we are going to mathematically 
model that movement. Before we do that, we must de� ne some quantities that we are 
going to use.

Motion may be described and analysed by the use of graphs and 

Classical physics requires a force to change a state of motion, as 

The fundamental concept of energy lays the base upon which all 

Conservation of momentum is an example of a law which is never 

In Chapter 1, we observed that things move and now we are going to mathematically 
model that movement. Before we do that, we must de� ne some quantities that we are 

A steam train crosses an 
arched bridge. Without a 
knowledge of mechanics trains 
and bridges would never have 
been built.
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Displacement and distance
It is important to understand the difference between distance travelled and displacement. 
To explain this, consider the route marked out on the map shown in Figure 2.1

Displacement is the shortest path moved in a particular direction.

The unit of displacement is the metre (m).

Displacement is a vector quantity.

On the map, the displacement is the length of the straight line from A to B, a distance 
of 5 km west. (Note: since displacement is a vector you should always say what the 
direction is.)

Distance is how far you have travelled from A to B.

The unit of distance is also the metre.

Distance is a scalar quantity.

In this example, the distance travelled is the length of the path taken, which is about 
10 km.

Sometimes this difference leads to a surprising result. For example, if you run all 
the way round a running track you will have travelled a distance of 400 m but your 
displacement will be 0 m.

In everyday life, it is often more important to know the distance travelled. For example, 
if you are going to travel from Paris to Lyon by road you will want to know that 
the distance by road is 450 km, not that your � nal displacement will be 336 km SE. 
However, in physics, we break everything down into its simplest parts, so we start by 
considering motion in a straight line only. In this case it is more useful to know the 
displacement, since that also has information about which direction you have moved.

Velocity and speed
Both speed and velocity are a measure of how fast a body is moving, but velocity is a 
vector quantity and speed is a scalar.

Velocity is de� ned as the displacement per unit time.

 velocity = 
displacement

time
The unit of velocity is m s–1.

Velocity is a vector quantity.

Speed is de� ned as the distance travelled per unit time.

 speed = 
distance

time
The unit of speed is also m s–1.

Speed is a scalar quantity.

Exercise
1 Convert the following speeds into m s–1.

(a) A car travelling at 100 km h–1.
(b) A runner running at 20 km h–1.

Figure 2.1

N

B A

5 km
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Average velocity and instantaneous velocity
Consider travelling by car from the north of Bangkok to the south – a distance of 
about 16 km. If the journey takes 4 hours, you can calculate your velocity to be 
16
4  = 4 km h–1 in a southwards direction. This doesn’t tell you anything about the 

journey, just the difference between the beginning and the end (unless you managed 
to travel at a constant speed in a straight line). The value calculated is the average 
velocity and in this example it is quite useless. If we broke the trip down into lots of 
small pieces, each lasting only one second, then for each second the car could be 
considered to be travelling in a straight line at a constant speed. For these short 
stages we could quote the car’s instantaneous velocity – that’s how fast it’s going at that 
moment in time and in which direction.

Exercise
2 A runner runs around a circular track of length 400 m with a 

constant speed in 96 s starting at the point shown. Calculate:

(a) the average speed of the runner.
(b) the average velocity of the runner.
(c) the instantaneous velocity of the runner after 48 s.
(d) the displacement after 24 s.

Constant velocity
If the velocity is constant then the instantaneous velocity is the same all the time so 
instantaneous velocity = average velocity. 

Since velocity is a vector this also implies that the direction of motion is constant.

Measuring a constant velocity

From the de� nition of velocity we see that velocity = 
displacement

time .

Rearranging this gives displacement = velocity × time.

So, if velocity is constant, displacement is proportional to time. To test this relationship 
and � nd the velocity we can measure the displacement of a body at different times. To 
do this you either need a lot of clocks or a stop clock that records many times. This is 
called a lap timer. In this example a bicycle was ridden at constant speed along a straight 
road past 6 students standing 10 m apart, each operating a stop clock as in Figure 2.4. 
The clocks were all started when the bike, already moving, passed the start marker and 
stopped as the bike passed each student.

10 mStart 10 m 10 m 10 m 10 m 10 m

Figure 2.2 It’s not possible to 
take this route across Bangkok 
with a constant velocity.

The bus in the photo has a 
constant velocity for a very 
short time.

N

Figure 2.3.

Figure 2.4 Measuring the 
time for a bike to pass.
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The results achieved have been entered into Table 2.1.

The uncertainty in position 
is quoted as 0.1 m since it 
is dif� cult to decide exactly 
when the bike passes the 
marker.

The digital stop clock had a 
scale with 2 decimal places 
so the uncertainty was 0.01 s. 
However, the uncertainty 
quoted is 0.02 s since the 
clocks all had to be started at 
the same time.

Since s is proportional to t, 
then a graph of s vs t should 
give a straight line with 
gradient = velocity as shown 
in Figure 2.5.

Notice in this graph the line does not quite hit all the dots. This is because the 
uncertainty in the measurement in time is almost certainly bigger than the uncertainty 
in the clock (±0.02 s) due to the reaction time of the students stopping the clock. To get 
a better estimate of the uncertainty we would have to have several students standing at 
each 10 m position. Repeating the experiment isn’t possible in this example since it is 
very dif� cult to ride at the same velocity several times.

The gradient indicates that the velocity = 3.4 m s−1.

Laboratory example 

Most school laboratories aren’t big enough to ride bikes in so when working indoors we need 
to use shorter distances. This means that the times are going to be shorter so hand-operated 
stop clocks aren’t going to be accurate enough. One way of timing in the lab is by using 
photogates. These are connected to the computer via an interface and record the time when a 
body passes in or out of the gate. So to replicate the bike experiment in the lab using a ball we 
would need 7 photogates as in Figure 2.6, one extra to represent the start.

5 cm 5 cm 5 cm 5 cm 5 cm 5 cm

photogates

This is would be quite expensive so we compromise by using just two photogates and a 
motion that can be repeated. An example could be a ball moving along a horizontal section 
of track after it has rolled down an inclined plane. Provided the ball starts from the same point 
it should have the same velocity. So instead of using seven photogates we can use two, one is 
set at the start of the motion and the other is moved to different positions along the track as 
in Figure 2.7.

Distance/m 
±0.1 m

Time/s 
±0.02 s

10.0 3.40

20.0 5.62

30.0 8.55

40.0 12.21

50.0 14.17

60.0 17.21

Table 2.1.

Figure 2.5 Graph of displacement vs time for a bike.
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Figure 2.6 How to measure 
the time for a rolling ball if 

you’ve got 7 photogates.
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5 cm 5 cm 5 cm 5 cm

start time

starting position

stop time

5 cm 5 cm

Table 2.2 shows the results were obtained using this arrangement.

Displacement/cm 
±0.1 cm  

Time(t)/s ±0.0001 s Mean 
t/s

Δt/s

5.0 0.0997 0.0983 0.0985 0.1035 0.1040 0.101 0.003

10.0 0.1829 0.1969 0.1770 0.1824 0.1825 0.18 0.01

15.0 0.2844 0.2800 0.2810 0.2714 0.2779 0.28 0.01

20.0 0.3681 0.3890 0.3933 0.3952 0.3854 0.39 0.01

25.0 0.4879 0.5108 0.5165 0.4994 0.5403 0.51 0.03

30.0 0.6117 0.6034 0.5978 0.6040 0.5932 0.60 0.01

Notice the uncertainty 
calculated from (max – min)

2  
is much more than the 
instrument uncertainty. 
Graphing displacement vs 
time gives Figure 2.8.

From this graph we can see 
that within the limits of the 
experiment’s uncertainties 
the displacement was 
proportional to time, so we 
can conclude that the velocity 
was constant. However, if we 
look closely at the data we 
see that there seems to be a 
slight curve indicating that 
perhaps the ball was slowing 
down. To verify this we would 
have to collect more data.

Measuring instantaneous velocity

To measure instantaneous velocity, a very small displacement must be used. This 
could be achieved by placing two photogates close together or attaching an obstructer 
such as a piece of card to the moving body as shown in Figure 2.9. The time taken for 
the card to pass through the photogate is recorded and the instantaneous velocity 
calculated from the length of card

time taken  ( d
t ).

Figure 2.7 Measuring the 
velocity of a ball with 2 
photogates.

Table 2.2. 
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slope = 48.53 cm s–1

y intercept = 0.08117 cm

Figure 2.8 Graph of 
displacement vs time for a 
rolling ball. 

Measuring the constant 
velocity of a ball rolling 
across a fl at table

A worksheet with full details 
of how to carry out this 
experiment is available on 
your eBook.

Figure 2.9 A card and 
photogate used to measure 
instantaneous velocity.

d

photogate

card
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Relative velocity
Velocity is a vector so must be added vectorially. Imagine you are running north at 
3 m s−1 on a ship that is also travelling north at 4 m s−1 as shown in Figure 2.10. Your 
velocity relative to the ship is 3 m s−1 but your velocity relative to the water is 7 m s−1. If 
you now turn around and run due south your velocity will still be 3 m s−1 relative to the 
ship but 1 m s−1 relative to the water. Finally, walking towards the east the vectors add at 
right angles to give a resultant velocity of magnitude 5 m s−1 relative to the water. You 
can see that the velocity vectors have been added.

3 m s–1

4 m s–1

7 m s–1

4 m s–1

3 m s–1

3 m s–1

4 m s–1

1 m s–1

4 m s–1

3 m s–1

3 m s–1

4 m s–1

5 m s–1
4 m s–1

3 m s–1

Imagine now that you are � oating in the water watching two boats travelling towards 
each other as in Figure 2.11.

4 m s–1 3 m s–1

–3 m s–1–4 m s–1

The blue boat is travelling east at 4 m s−1 and the green boat west at −3 m s−1. Remember 
that the sign of a vector in one dimension gives the direction, so if east is positive then 
west is negative. If you were standing on the blue boat you would see the water going 
past at −4 m s−1 so the green boat would approach with the velocity of the water plus 
its velocity in the water: −4 + −3 = −7 m s−1. This can also be done in 2 dimensions as in 
Figure 2.12.

4 m s–1

3 m s–1

5 m s–1

–4 m s–1

3 m s–1

According to the swimmer � oating in the water, the green boat travels north and the 
blue boat travels east. but an observer on the blue boat will see the water travelling 
towards the west and the boat travelling due north; adding these two velocities gives a 
velocity of 5 m s−1 in an approximately northwest direction.

Figure 2.10 Running on 
board a ship.

Figure 2.11 Two boats 
approach each other.

Figure 2.12 Two boats 
travelling perpendicular to 

each other.
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Exercises
3 An observer standing on a road watches a bird flying east at a velocity of 10 m s−1. A second observer, 

driving a car along the road northwards at 20 m s−1 sees the bird. What is the velocity of the bird 
relative to the driver?

4 A boat travels along a river heading north with a velocity 4 m s−1 as a woman walks across a bridge 
from east to west with velocity 1 m s−1. Calculate the velocity of the woman relative to the boat.

Acceleration
In everyday usage, the word accelerate means to go faster. However, in physics,
acceleration is de� ned as the rate of change of velocity.

acceleration = 
change of velocity

time  

The unit of acceleration is m s–2.

Acceleration is a vector quantity.

This means that whenever a body changes its velocity, it accelerates. This could be 
because it is getting faster, slower, or just changing direction. In the example of the 
journey across Bangkok, the car would have been slowing down, speeding up, and 
going round corners almost the whole time, so it would have had many different 
accelerations. However, this example is far too complicated for us to consider in 
this course (and probably any physics course). For most of this chapter we will only 
consider the simplest example of accelerated motion, constant acceleration.

Constant acceleration in one dimension
In one-dimensional motion, the acceleration, velocity,  and displacement are all in the 
same direction. This means they can simply be added without having to draw triangles. 
Figure 2.13 shows a body that is starting from an initial velocity u and accelerating at 
a constant rate a to velocity v in t seconds. The distance travelled in this time is s. Since 
the motion is in a straight line, this is also the displacement.

u

time = 0 time = t

va

s

Using the de� nitions already stated, we can write equations related to this example.

Average velocity
From the de� nition, the average velocity = 

change of velocity
time   .

So average velocity = 
s
t   (1)

Since the velocity changes at a constant rate from the beginning to the end, we can also 
calculate the average velocity by adding the velocities and dividing by two.

 Average velocity = 
(u + v)

2   (2)

Figure 2.13 A red ball is 
accelerated at a constant rate.
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Acceleration
Acceleration is de� ned as the rate of change of velocity.

So a = 
(v – u)

t  (3)

We can use these equations to solve any problem involving constant acceleration. 
However, to make problem solving easier, we can derive two more equations by 
substituting from one into the other. 

Equating equations (1) and(2)

 
s
t   = 

(u + v)
2  

so s = 
(u + v) t

2   (4)

Rearranging (3) gives v = u + at.

If we substitute for v in equation (4) we get s = ut + 1
2at2 (5)

Rearranging (3) again gives t = 
(v – u)

a  

If t is now substituted in equation (4) we get v2 = u2 + 2as (6)

These equations are sometimes known as the suvat equations. If you know any 3 of 
s, u, v, a, and t you can � nd either of the other two in one step.

Worked example

A car travelling at 10 m s–1 accelerates at 2 m s–2 for 5 s. What is its displacement?

Solution

The � rst thing to do is draw a simple diagram like Figure 2.14.

u = 10 m s–1

time = 0 time = 5 s

a = 2 m s–2

Figure 2.14 A simple diagram is always the best start.

This enables you to see what is happening at a glance rather than reading the text. 
The next stage is to make a list of suvat.

 s = ?

 u = 10 m s–1 

 v = ?

 a = 2 m s–2

 t = 5 s

To � nd s you need an equation that contains suat. The only equation with all 4 of 
these quantities is s = ut + 1

2at2

Using this equation gives: s = 10 × 5 + 1
2 × 2 × 52

 s = 75 m

suvat equations

a = 
(v – u)

t

s = 
(v + u)t

2

s = ut + 1
2at2 

v2 = u2 + 2as

You don’t need to include 
units in all stages of a 
calculation, just the answer.
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The signs of displacement, velocity, and acceleration
We must not forget that displacement, velocity, and acceleration are vectors. This 
means that they have direction. However, since this is a one-dimensional example, 
there are only two possible directions, forward and backward. We know which 
direction the vector is in from its sign. 

A positive displacement means that the body has moved to the right.

A positive velocity means the body is moving to the right.

A positive acceleration means that the body is either moving to the right and getting 
faster or moving to the left and getting slower. This can be confusing, so consider the 
following example.

5 m s–1

time = 5 s time = 0

u = 10 m s–1

The car is travelling in a negative direction so the velocities are negative.

 u = –10 m s–1

 v = –5 m s–1

 t = 5 s

The acceleration is therefore given by

a = 
(v – u) 

t   = 
–5 – –10

5   = 1 m s–2

The positive sign tells us that the acceleration is in a positive direction (right) even 
though the car is travelling in a negative direction (left).

Example

A body with a constant acceleration of –5 m s–2 is travelling to the right with a velocity 
of 20 m s–1. What will its displacement be after 20 s?

 s = ?

 u = 20 m s–1

 v = ?

 a = –5 m s–2

 t = 20 s

To calculate s we can use the equation s = ut + 1
2 at2

 s = 20 × 20 + 1
2 (–5) × 202 = 400 – 1000 = –600 m

This means that the � nal displacement of the body is to the left of the starting point. It 
has gone forward, stopped, and then gone backwards.

Exercises
5 Calculate the final velocity of a body that starts from rest and accelerates at 5 m s–2 for a distance of 100 m.

6 A body starts with a velocity of 20 m s–1 and accelerates for 200 m with an acceleration of 5 m s–2. What 
is the final velocity of the body?

7 A body accelerates at 10 m s–2 reaching a final velocity of 20 m s–1 in 5 s. What was the initial velocity of 
the body?

Figure 2.15

20 m s–1

5 m s–2

Figure 2.16 The acceleration 
is negative so pointing to 
the left.

g

The acceleration due to 
gravity is not constant all 
over the Earth. 9.81 m s–2 
is the average value. The 
acceleration also gets 
smaller the higher you go. 
However we ignore this 
change when conducting 
experiments in the lab 
since labs aren’t that high.

To make the examples 
easier to follow, 
g = 10 m s–2 is used 
throughout; you should 
only use this approximate 
value in exam questions if 
told to do so.
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Free fall motion
Although a car was used in one of the previous illustrations, the acceleration of a car 
is not usually constant, so we shouldn’t use the suvat equations. The only example of 
constant acceleration that we see in everyday life is when a body is dropped. Even then 
the acceleration is only constant for a short distance.

Acceleration of free fall
When a body is allowed to fall freely we say it is in free fall. Bodies falling freely on the 
Earth fall with an acceleration of about 9.81 m s–2. (It depends where you are.) The body 
falls because of gravity. For that reason we use the letter g to denote this acceleration. 
Since the acceleration is constant, we can use the suvat equations to solve problems.

Exercises
In these calculations use g = 10 m s–2. 

 8 A ball is thrown upwards with a velocity of 30 m s–1. What is the displacement of the ball after 2 s?

 9 A ball is dropped. What will its velocity be after falling 65 cm?

10 A ball is thrown upwards with a velocity of 20 m s–1. After how many seconds will the ball return to its 
starting point?

Measuring the acceleration due to gravity

When a body falls freely under the infl uence of gravity it accelerates at a constant rate. This means 
that time to fall, t, and distance, s, are related by the equation s = ut + 12 at2. If the body starts from 
rest then u = 0 so the equation becomes s = 12 at2. Since s is directly proportional to t2, a graph of 
s vs t2 would therefore be a straight line with gradient 12 g. It is diffi cult to measure the time for a ball 
to pass different markers but if we assume the ball falls with the same acceleration when repeatedly 
dropped we can measure the time taken for the ball to fall from different heights. There are many 
ways of doing this. All involve some way of starting a clock when the ball is released, and stopping 
it when it hits the ground. Table 2.3 shows a set of results from a ‘ball drop’ experiment.

Height(h)/m 
±0.001 Time(t)/s ±0.001

Mean 
t/s t²/s² Δt²/s²

0.118 0.155 0.153 0.156 0.156 0.152 0.154 0.024 0.001

0.168 0.183 0.182 0.183 0.182 0.184 0.183 0.033 0.004

0.218 0.208 0.205 0.210 0.211 0.210 0.209 0.044 0.001

0.268 0.236 0.235 0.237 0.239 0.231 0.236 0.056 0.002

0.318 0.250 0.254 0.255 0.250 0.256 0.253 0.064 0.002

0.368 0.276 0.277 0.276 0.278 0.276 0.277 0.077 0.001

0.418 0.292 0.293 0.294 0.291 0.292 0.292 0.085 0.001

0.468 0.310 0.310 0.303 0.300 0.311 0.307 0.094 0.003

0.518 0.322 0.328 0.330 0.328 0.324 0.326 0.107 0.003

0.568 0.342 0.341 0.343 0.343 0.352 0.344 0.118 0.004

Notice the uncertainty in t2 is calculated from 
(tmax

2 − tmin
2)

2
.

The effect of air 
resistance

If you jump out of a plane 
(with a parachute on) 
you will feel the push of 
the air as it rushes past 
you. As you fall faster 
and faster, the air will 
push upwards more 
and more until you can’t 
go any faster. At this 
point you have reached 
terminal velocity. We will 
come back to this after 
introducing forces.

Apparatus for measuring g.

Table 2.3 Measuring g.

If a parachutist kept 
accelerating at a constant 
rate they would break 
the sound barrier after a 
little more than 30 s of 
fl ight. By understanding 
the forces involved it has 
been possible to design 
wing suits so that base 
jumpers can achieve 
forward velocities greater 
than their rate of falling.
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Notice how the line in Figure 2.17 is very close to the points, and that the uncertainties 
refl ect the actual random variation in the data. The gradient of the line is equal to 12 g so 
g = 2 × gradient.

 g = 2 × 4.814 = 9.624 m s−2

The uncertainty in this value can be estimated from the steepest and least steep lines.

 gmax = 2 × 5.112 = 10.224 m s−2

 gmin = 2 × 4.571 = 9.142 m s−2.

 Δg =  (gmax
 − gmin)
2

 = (10.224 − 9.142)
2

 = 0.541 m s−2

So the fi nal value including uncertainty is 9.6 ± 0.5 m s−2.

This is in good agreement with the accepted average value which is 9.81 m s−2. 

0

0.1
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0.3

0.4

0.5

0.6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
time2/s2

he
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ht
/m

slope = 4.814 m s–2

y intercept = 0.005 m

slope = 4.571 m s–2

y intercept = 0.0137 m

slope = 5.112 m s–2

y intercept = –0.01030 m

Graphical representation of motion
Graphs are used in physics to give a visual representation of relationships. In 
kinematics they can be used to show how displacement, velocity, and acceleration 
change with time. Figure 2.18 shows the graphs for four different examples of motion. 
They are placed vertically since they all have the same time axis.

The best way to go about sketching graphs is to split the motion into sections then plot 
where the body is at different times; joining these points will give the displacement–
time graph. Once you have done that you can work out the v–t and a–t graphs by 
looking at the s–t graph rather than the motion.

Gradient of displacement–time

The gradient of a graph is 
change in y
change in x = 

Δy
Δx

In the case of the displacement–time graph this will give

 gradient = 
Δs
Δt   

This is the same as velocity.

Figure 2.17 Height vs time2 
for a falling object.

Measuring the 
acceleration due to 
gravity by timing a 
freefalling object

A worksheet with full details 
of how to carry out this 
experiment is available on 
your eBook.

You need to be able to 

•   fi gure out what kind of 
motion a body has by 
looking at the graphs

•   sketch graphs for a a 
given motion.
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Line A
A body that is not moving. 
Displacement is always the same.
Velocity is zero.
Acceleration is zero.

Line B
A body that is travelling with a constant positive velocity.
Displacement increases linearly with time.
Velocity is a constant positive value.
Acceleration is zero.

Line C
A body that has a constant negative velocity.
Displacement is decreasing linearly with time.
Velocity is a constant negative value.
Acceleration is zero.

Line D
A body that is accelerating with constant acceleration.
Displacement is increasing at a non-linear rate. The 
shape of this line is a parabola since displacement is 
proportional to t2 (s = ut + 12 at2).
Velocity is increasing linearly with time.
Acceleration is a constant positive value.

So the gradient of the displacement–time graph equals the velocity. Using this 
information, we can see that line A in Figure 2.19 represents a body with greater 
velocity than line B and that since the gradient of line C is increasing, this must be the 
graph for an accelerating body. 

Instantaneous velocity
When a body accelerates its velocity is constantly changing. The displacement–time 
graph for this motion is therefore a curve. To � nd the instantaneous velocity from the 
graph we can draw a tangent to the curve and � nd the gradient of the tangent as shown 
in Figure 2.20.

Area under velocity–time graph
The area under the velocity–time graph for the body travelling at constant velocity v 
shown in Figure 2.21 is given by

 area = vΔt

But we know from the de� nition of velocity that v = 
Δs
Δt  

Rearranging gives Δ s = vΔt so the area under a velocity–time graph gives the 
displacement.

This is true not only for simple cases such as this but for all examples.

Figure 2.18 Graphical 
representation of motion.
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Figure 2.21.46
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Gradient of velocity–time graph
The gradient of the velocity–time graph is given by 

Δv
Δt . This is the same as acceleration.

Area under acceleration–time graph
The area under an acceleration–time graph in Figure 2.22 is given by aΔt. But we know 
from the de� nition of acceleration that a = (v – u)

t

Rearranging this gives v – u = aΔt so the area under the graph gives the change in 
velocity.

If you have covered calculus in your maths course you may recognize these equations:

v = 
ds
dt, a = 

dv
dt  = 

d2s
d2t   , and s = ∫vdt, v = ∫adt

Exercises
11 Sketch a velocity–time graph for a body starting from rest and accelerating at a constant rate to a final 

velocity of 25 m s–1 in 10 seconds. Use the graph to find the distance travelled and the acceleration of 
the body.

12 Describe the motion of the body whose 
velocity–time graph is shown in Figure 2.23. 
What is the final displacement of the body?

10 

–10  

time/s

velocity/m s–1

3 6

9

Figure 2.23
13 A ball is released from rest on the hill in Figure 2.24. Sketch the s–t, v–t, and a–t graphs for its 

horizontal motion.

Figure 2.24.
14  A ball rolls along a table then falls off the edge landing on soft sand. Sketch the s–t, v–t, and a–t graphs 

for its vertical motion.

Example 1: the suvat example

As an example let us consider the motion we looked at when deriving the suvat 
equations.

u

time = 0 time = t

va

s

Displacement–time
The body starts with velocity u and travels to the right with constant acceleration, a for 
a time t. If we take the starting point to be zero displacement, then the displacement–
time graph starts from zero and rises to s in t seconds. We can therefore plot the two 

t time

ac
ce

le
ra

tio
n

a

Δ

Figure 2.22.

Negative time

Negative time doesn’t 
mean going back in 
time – it means the time 
before you started the 
clock.

Figure 2.25 A body with 
constant acceleration.
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points shown in Figure 2.26. The body is accelerating so the line joining these points is 
a parabola. The whole parabola has been drawn to show what it would look like – the 
reason it is offset is because the body is not starting from rest. The part of the curve to 
the left of the origin tells us what the particle was doing before we started the clock.

Velocity–time
Figure 2.27 is a straight line with a positive gradient 
showing that the acceleration is constant. The line 
doesn’t start from the origin since the initial 
velocity is u. 

The gradient of this line is (v – u)
t   which we know 

from the suvat equations is acceleration.

The area under the line makes the shape of a 
trapezium. The area of this trapezium is 12(v + u)t. 
This is the suvat equation for s.

Acceleration–time
The acceleration is constant so the acceleration–time 
graph is simply a horizontal line as shown in 
Figure 2.28. The area under this line is a × t which 
we know from the suvat equations equals (v – u).

Example 2: The bouncing ball

Consider a rubber ball dropped from some position above the ground A onto a 
hard surface B. The ball bounces up and down several times. Figure 2.29 shows the 
displacement–time graph for 4 bounces. From the graph we see that the ball starts 
above the ground then falls with increasing velocity (as deduced by the increasing 
negative gradient). When the ball bounces at B the velocity suddenly changes from 
negative to positive as the ball begins to travel back up. As the ball goes up, its velocity 
gets less until it stops at C and begins to fall again.

A

A

B
B

C

D time

displacement

Exercise
15 By considering the gradient of the displacement–time graph in Figure 2.29, plot the velocity–time 

graph for the motion of the bouncing ball.

Example 3: A ball falling with air resistance

Figure 2.30 represents the motion of a ball that is dropped several hundred metres 
through the air. It starts from rest and accelerates for some time. As the ball accelerates, 
the air resistance gets bigger, which prevents the ball from getting any faster. At this 
point the ball continues with constant velocity.

s

t

displacement

time

Figure 2.26. v

u

time

velocity

t

Figure 2.27.

a

time

acceleration

t

Figure 2.28.

Figure 2.29.

time

di
sp

la
ce

m
en

t

Figure 2.30.
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Exercise
16 By considering the gradient of the displacement–time graph plot the velocity–time graph for the 

motion of the falling ball in Figure 2.30.

Projectile motion

We all know what happens when a ball is thrown; it follows a curved path like the one 
in the photo. We can see from this photo that the path is parabolic, and later we will 
show why that is the case.

Modelling projectile motion
All examples of motion up to this point have been in one 
dimension but projectile motion is two-dimensional. 
However, if we take components of all the vectors 
vertically and horizontally, we can simplify this into two 
simultaneous one-dimensional problems. The important 
thing to realize is that the vertical and horizontal 
components are independent of each other; you can 
test this by dropping a stone off a cliff and throwing one 
forward at the same time: they both hit the bottom together. 
The downward motion is not altered by the fact that one 
stone is also moving forward.

Consider a ball that is projected at an angle θ to the 
horizontal, as shown in Figure 2.31. We can split the 
motion into three parts, beginning, middle, and end, and 
analyse the vectors representing displacement, velocity, 
and time at each stage. Note that the path is symmetrical so 
the motion on the way down is the same as on the way up.

A stroboscopic photograph 
of a projected ball.

A

B

C

v

R
Range

h
Max height

v

g

g

θ
θ

Figure 2.31 A projectile 
launched at an angle θ.

Figure 2.31 A projectile 
launched at an angle θ.
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Horizontal components

At A (time = 0) At B (time =   t __ 
2
  ) At C (time = t)

Displacement = zero

Velocity = v cos θ

Acceleration = 0

Displacement =   R __ 
2
  

Velocity = v cos θ

Acceleration = 0

Displacement = R

Velocity = v cos θ

Acceleration = 0

Vertical components

At A At B At C

Displacement = zero
Velocity = v sin θ
Acceleration = –g

Displacement = h
Velocity = zero
Acceleration = –g

Displacement = zero
Velocity = –v sin θ
Acceleration = –g

We can see that the vertical motion is constant acceleration and the horizontal motion 
is constant velocity. We can therefore use the suvat equations.

suvat for horizontal motion
Since acceleration is zero there is only one equation needed to de� ne the motion.

suvat A to C

Velocity = v =    s _ t  R = v cos θt

suvat for vertical motion
When considering the vertical motion it is worth splitting the motion into two parts.

suvat At B At C

s = 12(u + v)t

v2 = u2 + 2as

s = ut + 12at2

a = v – u
t

 

h = 12(v sin θ) t
2

 0 = v2 sin2θ – 2gh

h = v sin θt – 12g( t
2
)2

g = 
v sin θ – 0

t
2

0 = 12(v sin θ – v sin θ)t

(–v sin θ)2 = (v sin θ)2 – 0

 0 = v sin θt – 12gt2

g = 
v sin θ – –v sin θ

t

Some of these equations are not very useful since they simply state that 0 = 0. However 
we do end up with three useful ones (highlighted):

 R = v cos θt   (1)

 0 = v2 sin 2θ – 2gh or  h = 
v2 sin2 θ

2g  (2)

 0 = v sin θt – 1
2 gt2  or  t = 

2v sin θ
g  (3)

Solving problems
In a typical problem you will be given the magnitude and direction of the initial 
velocity and asked to � nd either the maximum height or range. To calculate h you 
can use equation (2) but to calculate R you need to � nd the time of � ight so must use 

Table 2.4 Horizontal 
components.

Table 2.5 Vertical 
components.

Table 2.6 suvat for horizontal 
motion.

Table 2.7 suvat for 
vertical motion.

Parabolic path

Since the horizontal 
displacement is 
proportional to t the 
path has the same shape 
as a graph of vertical 
displacement plotted 
against time. This is 
parabolic since the 
vertical displacement is 
proportional to t2.
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(3) � rst (you could also substitute for t into equation (1) to give a fourth equation but 
maybe we have enough equations already).

You do not have to remember a lot of equations to solve a projectile problem. If you 
understand how to apply the suvat equations to the two components of the projectile 
motion, you only have to remember the suvat equations (and they are in the databook).

Worked example

A ball is thrown at an angle of 30° to 
the horizontal at a speed of 20 m s–1. 
Calculate its range and the 
maximum height reached.

Solution

First, as always, draw a diagram, including labels de� ning all the quantities known 
and unknown.

Now we need to � nd the time of � ight. If we apply s = ut + 1
2 at2 to the whole � ight we get 

 t = 
2v sin θ

g  = 
(2 × 20 × sin 30°)

10  = 2 s

We can now apply s = vt to the whole � ight to � nd the range:

 R = v cos θ t = 20 × cos 30° × 2 = 34.6 m

Finally to � nd the height, we use s = ut + 1
2 at2 to the vertical motion, but remember, 

this is only half the complete � ight so the time is 1 s.

 h = v sin θ t – 1
2 gt2 = 20 × sin 30° × 1 – 1

2 × 10 × 12 = 10 – 5 = 5 m

Worked example

A ball is thrown horizontally from a cliff top with a horizontal speed of 10 m s–1. If 
the cliff is 20 m high what is the range of the ball?

Solution

This is an easy one since there aren’t any angles to deal with. The initial vertical 
component of the velocity is zero and the horizontal component is 10 m s–1. To 
calculate the time of � ight we apply s = ut + 1

2  at2 to the vertical component. Knowing 
that the � nal displacement is –20 m this gives

–20 m = 0 – 1
2 gt2 so t =   

(2 × 20)
10  = 2 s

We can now use this value to � nd the range by applying the formula s = vt to the 
horizontal component: R = 10 × 2 = 20 m

Maximum range

For a given value of v the 
maximum range is when 
v cos θ t is a maximum 
value. 

Now t = 
2v sin θ

g . 

If we substitute this for 
t we get 

R = 
2v2 cos θ sin θ

g
This is a maximum when 
cos θ sin θ is maximum, 
which is when θ = 45°.

When a bullet is fi red at a 
distant target it will travel 
in a curved path due to 
the action of gravity and 
air resistance. Precision 
marksmen adjust their 
sights to compensate 
for this. The angle of 
this adjustment could 
be based on calculation 
or experiment (trial and 
error).

20 m s–1

30°

h

RFigure 2.32.  

10 m s–1

20 m

R

Figure 2.33.

If you have ever played golf 
you will know it is not true 
that the maximum range is 
achieved with an angle of 45°; 
it is actually much less. This 
is because the ball is held up 
by the air like an airplane is. 
In this photo Alan Shepard 
is playing golf on the Moon. 
Here the maximum range will 
be at 45°.
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Exercises
17 Calculate the range of a projectile thrown at an angle of 60° to the horizontal with velocity 30 m s–1.

18 You throw a ball at a speed of 20 m s–1.

(a) At what angle must you throw it so that it will just get over a wall that is 5 m high?
(b) How far away from the wall must you be standing?

19 A gun is aimed so that it points directly at the centre of a target 200 m away. If the bullet travels at 
200 m s–1 how far below the centre of the target will the bullet hit?

20 If you can throw a ball at 20 m s–1 what is the maximum distance you can throw it?

Projectile motion with air resistance
In all the examples above we have ignored the fact that the air will resist the motion 
of the ball. The actual path of a ball including air resistance is likely to be as shown in 
Figure 2.34.

Without air
resistance

With air
resistance

Notice both the height and range are less. It is also no longer a parabola – the way 
down is steeper than the way up. 

2.2 Forces

2.2 Forces

Understandings, applications, and skills:
Objects as point particles
Free body diagrams

 ● Representing forces as vectors.
 ● Sketching and interpreting free body diagrams.

Guidance
 ● Students should label forces using commonly accepted names or symbols. e.g. Weight.
 ● Free body diagrams should show scaled vector lengths acting from the point of application.

Translational equilibrium
Newton’s laws of motion

 ● Describing the consequences of Newton’s fi rst law for translational equilibrium.
 ● Using Newton’s second law quantitatively and qualitatively. Identifying force pairs in the context of 
Newton’s third law. Solving problems involving forces and determining resultant force.

Guidance
 ● Examples and questions will be limited to constant mass.
 ● mg should be identifi ed as weight. 
 ● Calculations relating to the determination of resultant forces will be restricted to one and two 
dimensional situations.

Solid friction
 ● Describing solid friction (static and dynamic) by coeffi cients of friction. 

CHALLENGE 
YOURSELF
1 A projectile is launched 

perpendicular to a 30° 
slope at 20 m s−1. Calculate 
the distance between the 
launching position and 
landing position.

Figure 2.34.

To learn more about 
motion, go to the hotlinks 
site, search for the title 
or ISBN and click on 
Chapter 2.

NATURE OF SCIENCE

Newton’s three laws 
of motion are a set 
of statements, based 
on observation and 
experiment, that can 
be used to predict the 
motion of a point object 
from the forces acting on 
it. Einstein showed that 
the laws do not apply 
when speeds approach 
the speed of light. 
However, we still use 
them to predict outcomes 
at the lower velocities 
achieved by objects 
travelling in the lab.
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Force (F)
We can now model the motion of a constantly accelerating body but what makes it 
accelerate? From experience we know that to make something move we must push or 
pull it. We call this applying a force. One simple way of applying a force to a body is to 
attach a string and pull it. Imagine a sphere � oating in space with two strings attached; 
the sphere will not start to move unless one of the astronauts pulls the string as in 
Figure 2.35.

A B

If A pulls the string then the body will move to the left, and if B pulls it will move to the 
right. We can see that force is a vector quantity since it has direction.

Addition of forces
Since force is a vector we must add forces vectorially, so if A applies a force of 50 N and 
B applies a force of 60 N the resultant force will be 10 N towards B, as can be seen in 
Figure 2.36. 

50 N

50 N 10 N

60 N

60 N

A B

Or, in two dimensions, we can use trigonometry as in Figure 2.37.

In this case we can use Pythagoras to � nd x

x =    502 + 602 = 78 N

A force is a push or a 
pull.

The unit of force is the 
newton.

The size of one newton

If you hold an object of 
mass 100 g in your hand 
then you will be exerting 
an upward force of about 
one newton (1 N).

Figure 2.35 Two astronauts 
and a red ball.

50 N

50 N x

60 N

60 N

A

B

Figure 2.37 Astronauts pulling at right angles.Figure 2.36 Astronaut A pulls harder than B.

Astronauts in space 
are considered here 
so that no other forces 
are present. This makes 
things simpler.
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Taking components
As with other vector quantities we can calculate components of forces, for example we 
might want to know the resultant force in a particular direction.

In Figure 2.38 the component of the force in the x direction is Fx = 60 × cos 30° = 52 N.

This is particularly useful when we have several forces.

    

50 N

30°

30° x

60 N

In the example shown in Figure 2.39 we can use components to calculate the resultant 
force in the x direction = 60 × cos 30° + 50 × cos 30° = 52 + 43 = 95 N.

Exercise
21 Find the resultant force in the following examples:

(a)                                      (b)

Figure 2.40.

Equilibrium
If the resultant force on a body is zero, as in Figure 2.41, then we say the forces are 
balanced or the body is in equilibrium.

50 N

50 N

50 N

50 N

A B

30°

x

60 N

Figure 2.38 Pulling at an angle. Figure 2.39 Astronauts not pulling in line.

10 N

10 N

10 N

3 N

5 N

Figure 2.41 Balanced forces.
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Or with three forces as in Figure 2.42.

45°

45°

50 N

50 N

50 N 50 N

70.7 N

70.7 N

x

y

In this example the two blue forces are perpendicular making the trigonometry easy. 
Adding all three forces gives a right-angled triangle. We can also see that if we take 
components in any direction then the forces must be balanced. 

Taking components in the x direction:

−50 × cos 45° − 50 × cos 45° + 70.7 = −35.35 − 35.35 + 70.7 = 0

Taking components in the y direction:

50 × sin 45° − 50 × sin 45° = 0

Free body diagrams
Problems often involve more than one body; for example, the previous problem 
involved four bodies, three astronauts, and one red ball. All of these bodies will 
experience forces but if we drew them all on the diagram it would be very confusing, 
For that reason we only draw forces on the body we are interested in, in this case the 
red ball. This is called a free body diagram as shown in Figure 2.43. Note that we treat 
the red ball as a point object by drawing the forces acting on the centre. Not all forces 
actually act on the centre but when adding forces it can be convenient to draw them as 
if they do.

Exercises
22 In the following examples 

calculate the force F required 
to balance the forces.

Figure 2.44.

40 N

30° 30°
40 N40 N

60 N 60 N

(a) (b)

F
F

23 Calculate the resultant force 
for the following.

Figure 2.45. 40 N

40 N20°

20°

50 N

50 N

20 N
60 N

(a) (b)

Figure 2.42 Three balanced 
forces.

50 N

50 N

70.7 N

Figure 2.43 A free body 
diagram of the forces in 
Figure. 2.42.

55

M02_IBPH_SB_IBGLB_9021_CH02.indd   55 25/03/2014   13:43



24 By resolving the vectors into components, calculate if the following bodies are in translational 
equilibrium or not. If not, calculate the resultant force.

(a)  (b)

Figure 2.46.

25 If the following two examples are in equilibrium, calculate the unknown forces F1, F2, and F3.

(a)  (b)

Figure 2.47.

Newton’s fi rst law of motion
From observation we can conclude that to make a body move we need to apply an 
unbalanced force to it. What isn’t so obvious is that once moving it will continue 
to move with a constant velocity unless acted upon by another unbalanced force. 
Newton’s � rst law of motion is a formal statement of this: 

A body will remain at rest or moving with constant velocity unless acted upon 
by an unbalanced force.

The reason that this is not obvious to us on Earth is that we don’t tend to observe 
bodies travelling with constant velocity with no forces acting on them; in space it 
would be more obvious. Newton’s � rst law can be used in two ways. If the forces on a 
body are balanced then we can use Newton’s � rst law to predict that it will be at rest 
or moving with constant velocity. If the forces are unbalanced then the body will not 
be at rest or moving with constant velocity. This means its velocity changes – in other 
words, it accelerates. Using the law the other way round, if a body accelerates then 
Newton’s � rst law predicts that the forces acting on the body are unbalanced. To apply 
this law in real situations we need to know a bit more about the different types of force.

Types of force

Tension
Tension is the name of the force exerted by the 
astronauts on the red ball. If you attach a string to a 
body and pull it then you are exerting tension, as in 
Figure 2.48.

30°

10 N

1 N

8.66 N

4 N

6 N4 N

60°

30°

6 N

F1

6 N

45°

45°

60 N

20 N

F2

30°

F3

Using laws in physics

A law in physics is a very 
useful tool. If applied 
properly, it enables us 
to make a very strong 
argument that what we 
say is true. If asked ‘will a 
box move?’ you can say 
that you think it will and 
someone else could say 
it won’t. You both have 
your opinions and you 
would then argue as to 
who is right. However, 
if you say that Newton’s 
law says it will move, then 
you have a much stronger 
argument (assuming you 
have applied the law 
correctly).

T

Figure 2.48 Exerting tension 
with a string.
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Normal reaction
Whenever two surfaces are in contact with (touching) each other there will be a force 
between them. This force is perpendicular to the surface so it is called the normal 
reaction force. If the astronaut pushes the ball with his hand as in Figure 2.49, then there 
will be a normal reaction between the hand and the ball.

Note that the force acts on both surfaces so the astronaut will also experience a normal 
force. However, since we are interested in the ball, not the astronaut, we take the ball as 
our ‘free body’ so only draw the forces acting on it.

Gravitational force (weight)
Back on Earth, if a body is released above the ground as in Figure 2.50, it accelerates 
downwards. According to Newton’s � rst law there must be an unbalanced force 
causing this motion; this force is called the weight. The weight of a body is directly 
proportional to its mass: W = mg where g = 9.81 N kg−1. Note that this is the same as the 
acceleration of free fall. You will � nd out why later on.

Note that the weight acts at the centre of the body.

If a block is at rest on the � oor then Newton’s � rst law implies that the forces are 
balanced. The forces involved are weight (because the block has mass and is on the 
Earth) and normal force (because the block is in contact with the ground). Figure 2.51 
shows the forces.shows the forces.

W

R

Figure 2.51 A free body diagram of a box 
resting on the ground.

W

T

R

Figure 2.52 A string applies an upward force 
on the box.

W

T

Figure 2.53 The block is lifted as the tension is 
bigger than its weight.

These forces are balanced so –W + R = 0 or W = R.

If the mass of the block is increased then the normal reaction will also increase.

If a string is added to the block then we can exert tension on the block as in Figure 2.52.

The forces are still balanced since T + R = W. Notice how W has remained the same but 
R has got smaller. If we pull with more force we can lift the block as in Figure 2.53. At 
this point the normal reaction R will be zero. The block is no longer in contact with the 
ground; now T = W.

The block in Figure 2.54 is on an inclined plane (slope) so the weight still acts 
downwards. In this case it might be convenient to split the weight into components, 
one acting down the slope and one into the slope.

The component of weight perpendicular to the slope is W cos θ. Since there is no 
movement in this direction the force is balanced by R. The component of weight 

R

Figure 2.49 A normal 
reaction force is exerted when 
a hand is in contact with a ball.

W

the ground

Figure 2.50 A ball in free fall.

W

W
R

R

θθ

Figure 2.54 Free body 
diagram for a block on a 
slope. 57
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parallel to the slope is W sin θ. This force is unbalanced, causing the block to accelerate 
down the slope. If the angle of the slope is increased then sin θ  will also increase, 
resulting in a greater force down the slope.

Friction
There are two types of friction: static friction, which is the force that stops the relative 
motion between two touching surfaces and dynamic friction, which opposes the relative 
motion between two touching surfaces. In both cases the force is related to both the 
normal force and the nature of the surfaces, so pushing two surfaces together increases 
the friction between them.

F = μR where μ is the coef� cient of friction (static or dynamic).

Dynamic friction
In Figure 2.55 a block is being pulled along a table at a constant velocity.

d
Rμ

T

v

W

R

W

R

d
Rμ 2 

   d
Rμ

2T

2W

2R

Figure 2.56 Two blocks joined with a rope. Figure 2.57 Two blocks on top of 
each other.

Since the velocity is constant, Newton’s � rst law implies that the forces are balanced 
so T = F and W = R. Notice that friction doesn’t depend on the area of contact. We can 
show this by considering two identical blocks sliding at constant velocity across a table 
top joined together by a rope as in Figure 2.56. The friction under each cube is μdR so 
the total friction would be 2μdR.

If the one cube is now placed on top of the other as in Figure 2.57, the normal force 
under the bottom cube will be twice as much so the friction is now 2μdR. It doesn’t 
matter if the blocks are side by side (large area of contact) or on top of each other 
(small area of contact); the friction is the same.

If this is the case, then why do racing cars have wide tyres with no tread pattern 
(slicks)? There are several reasons for this but one is to increase the friction between 
the tyres and the road. This is strange because friction is not supposed to depend on 
area of contact. In practice friction isn’t so simple. When one of the surfaces is sticky 
like the tyres of a racing car the force does depend upon the surface area. The type of 
surfaces we are concerned with here are quite smooth, non-sticky surfaces like wood 
and metal.

Static friction
If a very small force is applied to a block at rest on the ground it won’t move. This 
means that the forces on the block are balanced (Newton’s � rst law): the applied force is 
balanced by the static friction.

T

T

v

F

F

R

W

W

R

Figure 2.55 The force 
experienced by a block pulled 

along a table.
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sRμ dRμ
T

at rest

F
T

at rest

T

acceleration

In this case the friction simply equals the applied force: F = T. As the applied force 
is increased the friction will also increase. However, there will be a point when the 
friction cannot be any bigger. If the applied force is increased past that point the block 
will start to move; the forces have become unbalanced as illustrated in Figure 2.58. 
The maximum value that friction can have is μsR where μs is the coef� cient of static 
friction. The value of static friction is always greater than dynamic friction. This can 
easily be demonstrated with a block on an inclined plane as shown in Figure 2.59.

dRμ
sRμ

W
W

RR

W

RF

In the � rst example the friction is balancing the component of weight down the plane 
which equals W sin θ, where θ is the angle of the slope. As the angle of the slope is 
increased, the point is reached where the static friction = μsR. The forces are still 
balanced but the friction cannot get any bigger so if the angle is increased further the 
forces become unbalanced and the block will start to move. Once the block moves the 
friction becomes dynamic friction. Dynamic friction is less than static friction, so this 
results in a bigger resultant force down the slope, causing the block to accelerate.

Friction doesn’t just slow things down, it is also the force that makes things move. 
Consider the tyre of a car as it starts to drive away from the traf� c lights. The rubber 
of the tyre is trying to move relative to the road. In fact, if there wasn’t any friction 
the wheel would spin as the tyre slipped backwards on the road. The force of friction 
that opposes the motion of the tyre slipping backwards on the road is therefore in the 
forwards direction.

If the static friction between the tyre and the road is not big enough the tyre will slip. 
Once this happens the friction becomes dynamic friction which is less than static 
friction, so once tyres start to slip they tend to continue slipping.

Buoyancy
Buoyancy is the name of the force 
experienced by a body totally or 
partially immersed in a � uid (a � uid 
is a liquid or gas). The size of this 
force is equal to the weight of � uid 
displaced. It is this force that enables 
a boat to � oat and a helium balloon 
to rise in the air. Let us consider a 
football and a bucket full of water.

Figure 2.58 μR is the 
maximum size of friction.

Figure 2.59 A block rests on a 
slope until the forces become 
unbalanced.

F

Figure 2.60 Friction pushes 
the car forwards.

Figure 2.61 A football 
immersed in a bucket of water.FB
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If you take the football and push it under the water then water will � ow out of the 
bucket, (luckily a big bowl was placed there to catch it). The weight of this displaced 
water is equal to the upward force on the ball. To keep the ball under water you would 
therefore have to balance that force by pushing the ball down.

The forces on a � oating object are balanced so the weight must equal the buoyant 
force. This means that the ball must have displaced its own weight of water as in 
Figure 2.62.

Air resistance
Air resistance, or drag force, is the force that opposes the motion of a body through the 
air. The size of this force depends on the speed, size and shape of the body. At slow 
speeds the drag force experienced by a sphere is given by Stoke’s law:

 F = 6πηvr
 where η = viscosity (a constant)
 v = velocity
 r = radius

When a balloon is dropped it accelerates downwards due to the force of gravity. As it 
falls through the air it experiences a drag force opposing its motion. As the balloon’s 
velocity gets bigger so does the drag force, until the drag force balances its weight at 
which point its velocity will remain constant (Figure 2.63). This maximum velocity is 
called its terminal velocity.

The same thing happens when a parachutist jumps out of a plane. The terminal 
velocity in this case is around 54 m s−1 (195 km h−1). Opening the parachute increases 
the drag force which slows the parachutist down to a safer 10 m s−1 for landing.

As it is mainly the air resistance that limits the top speed of a car, a lot of time and 
money is spent by car designers to try to reduce this force. This is particularly 
important at high speeds when the drag force is related to the square of the speed.

W

FfFd

R

Ff

Fd

W

R
2

R
2
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W

Figure 2.62 A football fl oats 
in a bucket of water.
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Figure 2.63 A balloon 
reaches terminal velocity as 

the forces become balanced. 
Notice the buoyant force is 

also present.

Figure 2.64 The forces acting 
on a car travelling at constant 

velocity.

Speed skiers wear special 
clothes and squat down like 
this to reduce air resistance.
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Exercises
26 A ball of weight 10 N is suspended on a string and pulled to one side by another horizontal string as 

shown in Figure 2.65. If the forces are balanced:

(a) write an equation for the horizontal components of the forces acting on the ball
(b) write an equation for the vertical components of the forces acting on the ball
(c) use the second equation to calculate the tension in the upper string, T
(d) use your answer to (c) plus the first equation to find the horizontal force F.

27 The condition for the forces to be balanced is that the sum of 
components of the forces in any two perpendicular components 
is zero. In the ‘box on a ramp’ example the vertical and horizontal 
components were taken. However, it is sometimes more convenient to 
consider components parallel and perpendicular to the ramp.

 Consider the situation in Figure 2.66. If the forces on this box are 
balanced:

(a) write an equation for the components of the forces parallel to 
the ramp

(b) write an equation for the forces perpendicular to the ramp
(c) use your answers to find the friction (F) and normal force (N).

28 A rock climber is hanging from a rope attached to the cliff by two bolts as shown in Figure 2.67. If the 
forces are balanced 

(a) write an equation for the vertical component of the forces on the knot
(b) write an equation for the horizontal forces exerted on the knot
(c) calculate the tension T in the ropes joined to the bolts.

 The result of this calculation shows why ropes should not be connected in this way.

2.3 Momentum and impulse

2.4 Momentum and impulse

Understandings, applications, and skills:
Newton’s second law expressed as a rate of change of momentum 

 ● Applying conservation of momentum in isolated systems including (but not limited to) the motion 
of rockets, collisions, explosions, or water jets.

 ● Using Newton’s second law quantitatively and qualitatively in cases where mass is not constant.

Guidance
 ● Students should be aware that F = ma is equivalent to F = Δp/Δt only when mass is constant.

Impulse and force–time graphs
 ● Sketching and interpreting force–time graphs.
 ● Determining impulse in various contexts including (but not limited to) car safety and sports.

Conservation of linear momentum
Elastic collisions, inelastic collisions, and explosions 

 ● Qualitatively and quantitatively comparing situations involving elastic collisions, inelastic collisions, 
and explosions.

Guidance
 ● Solving simultaneous equations involving conservation of momentum and energy in collisions will not 
be required.

 ● Calculations relating to collisions and explosions will be restricted to one-dimensional situations.
 ● A comparison between inelastic collisions (in which kinetic energy is not conserved) and the 
conservation of (total) energy should be made. 

The relationship between force and acceleration
Newton’s � rst law states that a body will accelerate if an unbalanced force is applied to 
it. Newton’s second law tells us how big the acceleration will be and in which direction. 

F

T

10 N

30°

Figure 2.65.

N
F

50 N

30°

Figure 2.66.

600 N

knot

80° 80°
TT

Figure 2.67.
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Before we look in detail at Newton’s second law we should look at the factors that 
affect the acceleration of a body when an unbalanced force is applied. Let us consider 
the example of catching a ball. When we catch the ball we change its velocity, Newton’s 
� rst law tells us that we must therefore apply an unbalanced force to the ball. The size 
of that force depends upon two things, the mass and the velocity. A heavy ball is more 
dif� cult to stop than a light one travelling at the same speed, and a fast one is harder to 
stop than a slow one. Rather than having to concern ourselves with two quantities we 
will introduce a new quantity that incorporates both mass and velocity: momentum.

Momentum (p)
Momentum is de� ned as the product of mass and velocity:      p = mv 

The unit of momentum is kg m s–1.

Momentum is a vector quantity.

Impulse
When you get hit by a ball the effect it has on you is greater if the ball bounces off you 
than if you catch it. This is because the change of momentum is greater when the ball 
bounces, as shown in Figure 2.68. 

The unit of impulse is kg m s–1.

Impulse is a vector.

Red ball

Momentum before = mv
Momentum after = –mv (remember momentum 
is a vector)
Change in momentum = –mv – mv = –2mv

Blue ball

Momentum before = mv
Momentum after = 0
Change in momentum = 0 – mv = –mv

The impulse is de� ned as the change of momentum. 

Exercises
29 A ball of mass 200 g travelling at 10 m s–1 bounces off a wall as in Figure 2.68. If after hitting the wall it 

travels at 5 m s–1, what is the impulse?

30 Calculate the impulse on a tennis racket that hits a ball of mass 67 g travelling at 10 m s–1 so that it 
comes off the racket at a velocity of 50 m s–1.

Newton’s second law of motion
The rate of change of momentum of a body is directly proportional to the 
unbalanced force acting on that body and takes place in same direction.

Let us once again consider a ball with a constant force acting on it as in Figure 2.69.

NATURE OF SCIENCE

The principle of 
conservation of 
momentum is a 
consequence of Newton’s 
laws of motion applied 
to the collision between 
two bodies. If this applies 
to two isolated bodies 
we can generalize that it 
applies to any number 
of isolated bodies. Here 
we will consider colliding 
balls but it also applies 
to collisions between 
microscopic particles 
such as atoms.

m

v

m

v

Before

v

After

Figure 2.68 The change of momentum 
of the red ball is greater.
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Newton’s � rst law tells us that there must be an unbalanced force acting on the ball 
since it is accelerating. 

Newton’s second law tells us that the size of the unbalanced force is directly 
proportional to the rate of change of momentum. We know that the force is constant 
so the rate of change of momentum is also constant, which, since the mass is also 
constant, implies that the acceleration is uniform so the suvat equations apply.

If the ball has mass m we can calculate the change of momentum of the ball.

Initial momentum = mu

Final momentum = mv

Change in momentum = mv – mu

The time taken is t so the rate of change of momentum =  
mv – mu

t

This is the same as m(v – u)
t   = ma

Newton’s second law states that the rate of change of momentum is proportional to 
the force, so F ∝ ma.

To make things simple the newton is de� ned so that the constant of proportionality is 
equal to 1 so:

F = ma

So when a force is applied to a body in this way, Newton’s second law can be simpli� ed to:

The acceleration of a body is proportional to the force applied and inversely 
proportional to its mass.

Not all examples are so simple. Consider a jet of water hitting a wall as in Figure 2.70. 
The water hits the wall and loses its momentum, ending up in a puddle on the � oor. 

Newton’s � rst law tells us that since the velocity of the water is changing, there must be 
a force on the water,

Newton’s second law tells us that the size of the force is equal to the rate of change 
of momentum. The rate of change of momentum in this case is equal to the amount 
of water hitting the wall per second multiplied by the change in velocity; this is not 
the same as ma. For this reason it is best to use the � rst, more general statement of 
Newton’s second law, since this can always be applied.

However, in this course most of the examples will be of the F = ma type.

Example 1: Elevator accelerating upwards
An elevator has an upward acceleration of 1 m s–2. If the mass of the elevator is 500 kg, 
what is the tension in the cables pulling it up?

Figure 2.69.

Unit of momentum

If F = change in 
momentum/time then 
momentum = force × 
time.
So the unit of 
momentum is N s. This 
is the same as kg m s–1.

v

Figure 2.70.
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First draw a free body diagram as in Figure 2.71. Now we can see what forces are 
acting. Newton’s � rst law tells us that the forces must be unbalanced. Newton’s second 
law tells us that the unbalanced force must be in the direction of the acceleration 
(upwards). This means that T is bigger than mg. 

Newton’s second law also tells us that the size of the unbalanced force equals ma so we 
get the equation
 T – mg = ma

Rearranging gives 
 T = mg + ma
  = 500 × 10 + 500 × 1
  = 5500 N

Example 2: Elevator accelerating downwards
The same elevator as in example 1 now has a downward acceleration of 1 m s–2 as in 
Figure 2.72.

This time Newton’s laws tell us that the weight is bigger than the tension so mg – T = ma 

Rearranging gives 

 T = mg – ma 
 = 500 × 10 – 500 × 1 
 = 4500 N

Example 3: Joined masses
Two masses are joined by a rope. One of the masses sits 
on a frictionless table, the other hangs off the edge as in 
Figure 2.73.

M is being dragged to the edge of the table by m.

Both are connected to the same rope so T is the same for 
both masses. This also means that the acceleration a is 
the same. 

We do not need to consider N and Mg for the mass on 
the table because these forces are balanced. However the 
horizontally unbalanced force is T.

Applying Newton’s laws to the mass on the table gives

 T = Ma

The hanging mass is accelerating down so mg is bigger than T. Newton’s second law 
implies that mg – T = ma

Substituting for T gives mg – Ma = ma so a = 
mg

M + m

Example 4: The free fall parachutist
After falling freely for some time, a free fall parachutist whose weight is 60 kg opens his 
parachute. Suddenly the force due to air resistance increases to 1200 N. What happens? 

T

mg

a

Figure 2.71 An elevator 
accelerating upwards. This 

could either be going up 
getting faster or going down 

getting slower.

T

mg

a

Figure 2.72 The elevator with 
downward acceleration. N

T

T

a

a

Mg

mg

Figure 2.73.
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Looking at the free body diagram in Figure 2.74 we can see that the forces are 
unbalanced and that according to Newton’s second law the acceleration, a, will 
be upwards. 

The size of the acceleration is given by

 ma = 1200 – 600 = 60 × a

so a = 10 m s–2

The acceleration is in the opposite direction to the motion. This will cause the 
parachutist to slow down. As he slows down, the air resistance gets less until the forces 
are balanced. He will then continue down with a constant velocity.

Exercises
31 The helium in a balloon causes an upthrust of 0.1 N. If 

the mass of the balloon and helium is 6 g, calculate the 
acceleration of the balloon.

32 A rope is used to pull a felled tree (mass 50 kg) along the 
ground. A tension of 1000 N causes the tree to move from 
rest to a velocity of 0.1 m s–1 in 2 s. Calculate the force due to 
friction acting on the tree.

33 Two masses are arranged on a frictionless table as shown in 
Figure 2.75. Calculate:

(a) the acceleration of the masses
(b) the tension in the string.  Figure 2.75.

34 A helicopter is lifting a load of mass 1000 kg with a rope. The rope is strong enough to hold a force of 
12 kN. What is the maximum upward acceleration of the helicopter?

35 A person of mass 65 kg is standing in an elevator that is accelerating upwards at 0.5 m s–2. 
What is the normal force between the floor and the person?

36 A plastic ball is held under the water by a child in a swimming pool. The volume of the ball is 
4000 cm3.

(a) If the density of water is 1000 kg m–3, calculate the buoyant force on the ball (remember buoyant 
force = weight of fluid displaced).

(b) If the mass of the ball is 250 g, calculate the theoretical acceleration of the ball when it is released. 
Why won’t the ball accelerate this quickly in a real situation?

1200 N

600 N

Figure 2.74 The parachutist 
just after opening the 
parachute.

Even without a parachute 
base jumpers reach terminal 
velocity.

10 kg

5 kg
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Experiment to test the relationship between acceleration and force 

It isn’t easy to apply a constant, known force to a moving body: just try pulling a cart along the 
table with a force meter and you will see. One way this is often done in the laboratory is by 
hanging a mass over the edge of the table as shown in Figure 2.76.

If we ignore any friction in the pulley or in the wheels of the trolley then the unbalanced 
force on the trolley = T. Since the mass is accelerating down then the weight is bigger than T 
so W − T = ma where m is the mass hanging on the string. The tension is therefore given by 
T = mg − ma = m(g − a).

There are several ways to measure the acceleration of the trolley; one is to use a motion 
sensor. This senses the position of the trolley by refl ecting an ultrasonic pulse off it. Knowing 
the speed of the pulse, the software can calculate the distance between the trolley and sensor. 
As the trolley moves away from the sensor the time taken for the pulse to return increases; 
the software calculates the velocity from these changing times. Using this apparatus, the 
acceleration of the trolley for different masses was measured, and the results are given in the 
Table 2.8.

Table 2.8 Results from the force and acceleration experiment.

Mass/kg 
±0.0001

Acceleration/m s−2 
±0.03

Tension 
(T = mg − ma)/N

Max 
T/N

Min 
T/N

 
ΔT/N

0.0100 0.10 0.097 0.098 0.096 0.001

0.0500 0.74 0.454 0.453 0.451 0.001

0.0600 0.92 0.533 0.532 0.531 0.001

0.1000 1.49 0.832 0.830 0.828 0.001

0.1500 2.12 1.154 1.150 1.148 0.001

The uncertainty in mass is given by the last 
decimal place in the scale, and the uncertainty in 
acceleration by repeating one run several times. To 
calculate the uncertainty in tension the maximum 
and minimum values have been calculated by 
adding and subtracting the uncertainties.

These results are shown in Figure 2.77.

Applying Newton’s second law to the trolley the 
relationship between T and a should be T = Ma 
where M is the mass of the trolley. This implies that 
the gradient of the line should be M. From the graph 
we can see that the gradient is 0.52 ± 0.02 kg which 
is quite close to the 0.5 kg mass of the trolley.

According to theory the intercept should be (0, 0) 
but we can see that there is a positive intercept of 
0.05 N. It appears that each value is 0.05 N too big. 
The reason for this could be friction. If there was 
friction then the actual unbalanced force acting on 
the trolley would be tension – friction. If this is the 
case then the results would imply that friction is 
about 0.05 N.

motion sensor

a

a

T

T

W

Figure 2.76 Apparatus 
for fi nding the relationship 

between force and 
acceleration.

The relationship 
between force and 
acceleration

Full details of how to 
carry out this experiment 
with a worksheet are 
available online.
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slope = 0.501 N m–1s2

y intercept = 0.072 N

slope = 0.521 N m–1s2

y intercept = 0.055 N

slope = 0.546 N m–1s2

y intercept = 0.0199 N

Figure 2.77 Graph of tension 
against acceleration.
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Newton’s third law of motion
When dealing with Newton’s � rst and second laws, we are careful to consider only the 
body that is experiencing the forces, not the body that is exerting the forces. Newton’s 
third law relates these forces.

If body A exerts a force on body B then body B will exert an equal and opposite 
force on body A.

So if someone is pushing a car with a force F as shown in Figure 2.78 the car will 
push back on the person with a force –F. In this case both of these forces are the 
normal force.

–F F

You might think that since these forces are equal and opposite, they will be balanced, 
and in that case how does the person get the car moving? This is wrong; the forces act 
on different bodies so can’t balance each other.

Example 1: A falling body
A body falls freely towards the ground as in Figure 2.79. If we 
ignore air resistance, there is only one force acting on the body 
– the force due to the gravitational attraction of the Earth, that 
we call weight.

Applying Newton’s third law:

If the Earth pulls the body down, then the body must pull the 
Earth up with an equal and opposite force. We have seen that 
the gravitational force always acts on the centre of the body, so 
Newton’s third law implies that there must be a force equal to 
W acting upwards on the centre of the Earth as in Figure 2.80.

Example 2: A box rests on the fl oor
A box sits on the � oor as shown in Figure 2.81. Let us apply 
Newton’s third law to this situation.
There are two forces acting on the box.

Normal force: The � oor is pushing up on the box with a force 
N. According to Newton’s third law the box must therefore 
push down on the � oor with a force of magnitude N.

Weight: The Earth is pulling the box down with a force W. 
According to Newton’s third law, the box must be pulling the 
Earth up with a force of magnitude W as shown in Figure 2.82.

Incorrect statements

It is very important to 
realise that Newton’s third 
law is about two bodies. 
Avoid statements of this 
law that do not mention 
anything about there 
being two bodies.

Figure 2.78 The man pushes 
the car and the car pushes the 
man.

W

Figure 2.79 A falling body 
pulled down by gravity.

Figure 2.80 The Earth 
pulled up by gravity.

W

W

N

Figure 2.81 Forces acting on 
a box resting on the fl oor.

Students often think that 
Newton’s third law implies 
that the normal force = 
–weight, but both of these 
forces act on the box. If 
the box is at rest these 
forces are indeed equal 
and opposite but this is 
due to Newton’s fi rst law.

W

N

Figure 2.82 Forces acting 
on the Earth according to 
Newton’s third law.
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Example 3: Recoil of a gun
When a gun is � red the velocity of the bullet changes. Newton’s � rst law implies that 
there must be an unbalanced force on the bullet; this force must come from the gun. 
Newton’s third law says that if the gun exerts a force on the bullet the bullet must exert 
an equal and opposite force on the gun. This is the force that makes the gun recoil or 
‘kick back’.

Example 4: The water cannon
When water is sprayed at a wall from a hosepipe it hits the wall and stops. Newton’s 
� rst law says that if the velocity of the water changes, there must be an unbalanced 
force on the water. This force comes from the wall. Newton’s third law says that if the 
wall exerts a force on the water then the water will exert a force on the wall. This is the 
force that makes a water cannon so effective at dispersing demonstrators.

  A boat tests its water cannons.

Exercise
37 Use Newton’s first and third laws to explain the following:

(a) When burning gas is forced downwards out of a rocket motor, the rocket accelerates up.
(b) When the water cannons on the boat in the photo are operating, the boat accelerates forwards.
(c) When you step forwards off a skateboard, the skateboard accelerates backwards.
(d) A table tennis ball is immersed in a fluid and held down by a string as shown in Figure 2.83. The 

container is placed on a balance. What will happen to the reading of the balance if the string 
breaks?

Collisions
In this section we have been dealing with the interaction between two bodies 
(gun–bullet, skater–skateboard, hose–water). To develop our understanding of the 
interaction between bodies, let us consider a simple collision between two balls as 
illustrated in Figure 2.84.

v1 v2

u1

m1

u2

m2

Before

After

During
F2F1

water

string

balance

Figure 2.83.

Figure 2.84 Collision 
between two balls.
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Let us apply Newton’s three laws to this problem.

Newton’s fi rst law
In the collision the red ball slows down and the blue ball speeds up. Newton’s � rst law 
tells us that that this means there is a force acting to the left on the red ball (F1) and to 
the right on the blue ball (F2).

Newton’s second law
This law tells us that the force will be equal to the rate of change of momentum of the 
balls so if the balls are touching each other for a time ∆t:

 F1 = 
m1v1 – m1u1

Δt

 F2 = 
m2v2 – m2u2

Δt

Newton’s third law
According to the third law, if the red ball exerts a force on the blue ball, then the blue 
ball will exert an equal and opposite force on the red ball.

 F1 = –F2 

 
m1v1 – m1u1

Δt  = 
–(m2v2 – m2u2)

Δt
Rearranging gives m1u1 + m2u2 = m1v1 + m2v2

In other words the momentum at the start equals the momentum at the end. 
We � nd that this applies not only to this example but to all interactions.

The law of the conservation of momentum
For a system of isolated bodies the total momentum is always the same.

This is not a new law since it is really just a combination of Newton’s laws. However it 
provides a useful short cut when solving problems.

Examples
In these examples we will have to pretend everything is in space isolated from the 
rest of the Universe, otherwise they are not isolated and the law of conservation of 
momentum won’t apply. 

1. A collision where the bodies join together

If two balls of modelling clay collide with each other they stick together as shown in 
Figure 2.85. We want to � nd the velocity, v, of the combined lump after the collision.

6 m s–1

100 g

v

Before After

500 g

Isolated system

An isolated system is 
one in which no external 
forces are acting. When 
a ball hits a wall the 
momentum of the ball is 
not conserved because 
the ball and wall is not 
an isolated system, since 
the wall is attached to 
the ground. If the ball 
and wall were fl oating in 
space then momentum 
would be conserved.

Simplifi ed models

Pieces of clay fl oating 
in space are not exactly 
everyday examples, 
but most everyday 
examples (like balls on 
a pool table) are not 
isolated systems, so we 
can’t solve them in this 
simple way.

Figure 2.85 Two bodies stick 
together after colliding.
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If bodies are isolated then momentum is conserved so:

 momentum before = momentum after

 0.1 × 6 + 0.5 × 0.0 = 0.6 × v

 v = 
0.6
0.6 = 1 m s–1

2. An explosion

A ball of clay � oating around in space suddenly explodes into a big piece and a small 
piece, as shown in Figure 2.86. If the big bit has a velocity of 5 m s–1, what is the velocity 
of the small bit?

Since this is an isolated system, momentum is conserved so:

 momentum before = momentum after
 0 × 0.12 = 0.02 × (–v) + 0.1 × 5
 0.02 × v = 0.5
 v = 25 m s–1

Rocket engine
The momentum of a rocket plus fuel � oating in space is zero but when the engines are 
� red gas is expelled at high speed. This gas has momentum towards the left so in order 
to conserve momentum the rocket will move towards the right.

zero momentum momentum of gas momentum of rocket

The momentum of the rocket will equal the momentum of the expelled gases, so 
increasing the rate at which the gases are expelled will increase the acceleration of the 
rocket. Note that the situation for a rocket about to blast off on the Earth is rather more 
complex since the rocket + fuel can no longer be considered isolated.

Jet engine

A jet engine produces thrust (the force that pushes the plane forwards) by increasing 
the speed of air taken in at the front by passing it through a series of turbines. The 
fast-moving air expelled from the back of the engine has an increased momentum so 
if momentum is to be conserved the plane must have increased momentum in the 
forwards direction.

5 m s–1v

Before After

120 g 20 g 100 g

5 m s–1v

Before After

120 g 20 g 100 g

Figure 2.86 A piece of 
modelling clay suddenly 

explodes.

Figure 2.87 Rocket engine 
expels gas to give thrust.

A passenger jet aeroplane 
powered by four jet engines.
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Exercise
38 Draw diagrams to represent the following collisions then use the law of conservation of momentum 

to find the unknown velocity. Assume all collisions are head-on, in other words they take place in one 
dimension.

(a) Two identical isolated balls collide with each other. Before the collision, one ball was travelling at 
10 m s–1 and the other was at rest. After the collision the first ball continues in the same direction 
with a velocity of 1 m s–1. Find the velocity of the other ball.

(b) Two identical balls are travelling towards each other; each is travelling at a speed of 5 m s–1. After 
they hit, one ball bounces off with a speed of 1 m s–1. What is the speed of the other?

(c) A spaceman of mass 100 kg is stranded 2 m from his spaceship as shown in Figure 2.88. He 
happens to be holding a hammer of mass 2 kg what must he do?

 If he only has enough air to survive for 2 minutes, how fast must he throw the hammer if he is to get 
back in time? Is it possible?

   

Figure 2.88 If you are 
ever in this position 
this course could save 
your life.

Momentum and force
If a constant unbalanced force acts on an isolated body the graph of the force against 
time would be as shown in Figure 2.89, force remaining constant all the time.

According to Newton’s second law the bodies rate of change of momentum will be 
equal to force applied so F = Δmv

Δt .

Rearranging this gives Δmv = FΔt where FΔt is the area under the graph. 
This is the case whenever a force is applied over a time.

Now let us consider a more dif� cult example of a 2 kg steel ball 
travelling at 10 m s−1 bouncing off a concrete wall as illustrated by the 
graph in Figure 2.90.

From the graph you can see that the ball is only in contact with the wall 
for 0.0002 s, the force is not constant but has its maximum value, Fmax 
in the middle of the bounce. 

The change in momentum (impulse) = momentum after − momentum before 
= –2 × 10 − 2 × 10 = –40 N s. This is the same as the area under the graph 
= 1

2 × Fmax × 0.0002 

so 1
2 × Fmax × 0.0002 = –40 N s

which makes Fmax = –400 kN

Note that the force on the ball is 
negative because it is to the left.

If the same ball is thrown against 
a soft wall, the soft wall bends 
inwards as the ball hits it, resulting 
in a bounce lasting a much longer 
time as represented by the graph in 
Figure 2.91, let’s say 0.2 s. 

F

t

F

Figure 2.89 Graph of force 
against time for constant force.

The change in momentum (impulse) = momentum after − momentum before 

F

t

Fmax

0.0002 s

10 m s–1

before during after

0

2 kg 2 kg

10 m s–1

2 kg

Figure 2.90 Graph of force 
against time for a hard 
collision.

F

t

Fmax

0.2 s

10 ms–1

before during after

0

2 kg 2 kg

10 ms–1

2 kg
Figure 2.91 Force against 
time for a soft collision.
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The mass and change in velocity are the same as last time so impulse Δmv = 40 N s. This 
means that the area under the graph is the same as last time so:

 1
2 × Fmax × 0.2 = –40 N s

 Fmax = –400 N.

From this example we can see that the amount of force required to slow down a body 
is related to the time of application of the force. This is very important when designing 
climbing ropes. If a climber fell a distance of 10 m they would be travelling at about 
14 m s−1. If the rope didn’t stretch they would be brought to rest very quickly resulting 
in a large force applied to the climber. This sudden large force would certainly injure 
the climber and probably even break the rope. It is for this very reason that stretchy 
ropes are used, making the result of being stopped by the rope pleasant rather than life 
threatening. Similar considerations also come to play when designing cars. If cars were 
made out of perfectly rigid materials, when involved in a crash they would stop very 
rapidly. The driver would also subjected to large forces resulting in injury. To make the 
time of collision longer and hence the force smaller, cars are designed with crumple 
zones that collapse when the car hits something. This doesn’t make crashing a car 
pleasant but can reduce injury.

Figure 2.92 shows some real data obtained by dropping a ball of modelling clay onto a 
force sensor. The negative peak is probably due to the ball sticking to the force sensor 
on the way back up. This graph is part of the data collected by IB student Gustav 
Gordon researching the relationship between temperature and maximum force 
experienced when a plasticine ball hits the � oor for his Extended Essay.
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Exercises
39 (a)  Calculate the impulse of the body for the motion 

represented in Figure 2.93.

(b) If the mass of the object is 20 g, what is the change of 
velocity?

Figure 2.93.

40 Use the data in Figure 2.93 to estimate the height that the 20 g plasticine ball was dropped from.

The author testing a climbing 
rope.

The amount that a 
climbing rope stretches 
is related to the length 
of the rope. If the length 
is short then the stretch 
may not be enough to 
reduce the force of the 
fall suffi ciently. In this 
case the person holding 
the rope can allow the 
rope to run by moving 
forwards. This is a little 
disconcerting for the 
climber who falls further 
than expected.

Figure 2.92 Force against 
time for a plasticine ball 

landing on a force sensor.

time/s

force/N

0.1 0.2 0.3 0.4 0.50

1
2
3
4
5
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Pressure (P)
If we take the example of a block resting on the ground, the bottom surface of the 
block is in contact with the ground so will exert a normal reaction force on the 
ground. The normal reaction on the ground is equal to the normal reaction on the 
block (Newton’s third law) which, since the block is in equilibrium, is equal to the 
weight of the object (Newton’s � rst law). The force on the ground will therefore be the 
same no matter what the area of contact is, so in Figure 2.94 the normal reaction is the 
same in both cases. Even though the force is the same, the effect of the force might be 
different. Imagine the block was placed on something soft like snow, mud, or sand. The 
block with the smallest area would then push into the soft material the most. This is 
because the force per unit area (pressure) is greater.

 pressure = 
force
area

The unit pressure is the N m−2. This is called a pascal (Pa).

2.4 Work, energy, and power

2.3 Work, energy, and power

Understandings, applications, and skills:
Principle of conservation of energy

 ● Discussing the conservation of total energy within energy transformations.
Kinetic energy
Gravitational potential energy
Elastic potential energy

 ● Sketching and interpreting force–distance graphs.
Work done as energy transfer

 ● Determining work done including cases where a resistive force acts.

Guidance
 ● Cases where the line of action of the force and the displacement are not parallel should be 
considered.

 ● Examples should include force–distance graphs for variable forces.
Power as rate of energy transfer

 ● Solving problems involving power.
Effi ciency

 ● Quantitatively describing effi ciency in energy transfers.

NATURE OF SCIENCE

Scientists should remain sceptical but that doesn’t mean you have to doubt everything 
you read. The law of conservation of energy is supported by many experiments, and is 
the basis of countless predictions that turn out to be true. If someone now found that 
energy was not conserved then there would be a lot of explaining to do. Once a law is 
accepted it gives us an easy way to make predictions. For example, if you are shown a 
device that produces energy from nowhere you know it must be a fake without even 
fi nding out how it works because it violates the law of conservation of energy.

We have so far dealt with the motion of a small red ball and understand what causes 
it to accelerate. We have also investigated the interaction between a red ball and a blue 
one and have seen that the red one can cause the blue one to move when they collide. 
But what enables the red one to push the blue one? To answer this question we need to 
de� ne some more quantities.

R

R

Figure 2.94 Comparing the 
force under two different 
areas.
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Work
In the introduction to this book it was stated that by developing models, our aim is 
to understand the physical world so that we can make predictions. At this point you 
should understand certain concepts related to the collision between two balls, but we 
still can’t predict the outcome. To illustrate this point let us again consider the red and 
blue balls. Figure 2.95 shows three possible outcomes of the collision.

If we apply the law of conservation of momentum, we realize that all three outcomes 
are possible. The original momentum is 10 N s and the � nal momentum is 10 N s in all 
three cases. But which one actually happens? This we cannot say (yet). All we know is 
that from experience the last option is not possible – but why?

When body A hits body B, body A exerts a force on body B. This force causes B to have 
an increase in velocity. The amount that the velocity increases depends upon how 
big the force is and over what distance the collision takes place. To make this simpler, 
consider a constant force acting on two blocks as in Figure 2.96.

F F

F F

Both blocks start at rest and are pulled by the same force, but the orange block will gain 
more velocity because the force acts over a longer distance. To quantify this difference, 
we say that in the case of the orange block the force has done more work. Work is done 
when the point of application of a force moves in the direction of the force. 

Work is de� ned in the following way:

Work done = force × distance moved in the direction of the force.

The unit of work is the newton metre (N m) which is the same as the joule (J).

Work is a scalar quantity.

Worked example

A tractor pulls a felled tree along the ground 
for a distance of 200 m. If the tractor exerts a 
force of 5000 N, how much work will be done?

Figure 2.97.

Solution

Work done = force × distance moved in direction of force

Work done = 5000 × 200 = 1 MJ

10 m s–1

1 kg 1 kg

1 m s–1

a.
9 m s–1

5 m s–1

b.
5 m s–1

100 m s–1

c.
110 m s–1

Figure 2.95 The red ball 
hits the blue ball but what 

happens?

Figure 2.96 The force acts on 
the orange block for a greater 

distance
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Worked example

A force of 10 N is applied 
to a block, pulling it 
50 m along the ground 
as shown in Figure 2.98. 
How much work is done 
by the force?

Figure 2.98.

Solution

In this example the force is not in the same direction as the movement. However, the 
horizontal component of the force is.

Work done = 10 × cos 30° × 50 = 433 N

Worked example

When a car brakes it slows down due to the friction force between the tyres and the 
road. This force opposes the motion as shown in Figure 2.99. If the friction force is 
a constant 500 N and the car comes to rest in 25 m, how much work is done by the 
friction force?

25 m
500 N 500 N

Figure 2.99 Work done against friction.

Solution

This time the force is in the opposite direction to the motion.

 Work done = –500 × 25 = –12 500 J

The negative sign tells us that the friction isn’t doing the work but the work is being 
done against the friction.

Worked example

The woman in Figure 2.100 walks along with a constant 
velocity holding a suitcase. 
How much work is done by the force holding the case?

Figure 2.100.

Solution

In this example the force is acting perpendicular to the 
direction of motion, so there is no movement in the direction 
of the force.

 Work done = zero

10 N

50 m

30°

10 N

v

F

Working or not?

It may seem strange that 
when you carry a heavy 
bag you are not doing 
any work – that’s not what 
it feels like. In reality, lots 
of work is being done, 
since to hold the bag 
you use your muscles. 
Muscles are made of 
microscopic fi bres, 
which are continuously 
contracting and relaxing, 
so are doing work.
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General formula
In general

Work = F cos θ × ∆s

where θ is the angle between 
the displacement, ∆s, and 
force, F (see Figure 2.101).

 Figure 2.101.

All the previous examples can be solved using this formula.

If θ < 90°, cos θ is positive so the work is positive.

θ = 90°, cos θ = 0 so the work is zero.

θ > 90°, cos θ is negative so the work is negative.

Exercises
41 Figure 2.102 shows a boy taking a dog for a walk.

(a) Calculate the work done by the force shown when the 
dog moves 10 m forward.

(b) Who is doing the work?

Figure 2.102.

42 A bird weighing 200 g sits on a tree branch. How much work does the bird do on the tree?

43 As a box slides along the floor it is slowed down by a constant force due to friction. If this force is 
150 N and the box slides for 2 m, how much work is done against the frictional force?

Graphical method for determining work done
Let us consider a constant force acting in the direction of movement pulling a body a 
distance Δx. The graph of force against distance for this example is simply as shown in 
Figure 2.103. From the de� nition of work we know that work done = FΔx which in this 
case is the area under the graph. From this we can deduce that:

work done = area under force vs distance graph

Work done by a varying force
Stretching a spring is a common example of a varying 
force. When you stretch a spring it gets more and 
more dif� cult the longer it gets. Within certain limits 
the force needed to stretch the spring is directly 
proportional to the extension of the spring. This was 
� rst recognised by Robert Hooke in 1676, so is named 
‘Hooke’s Law’. Figure 2.104 shows what happens if 
we add different weights to a spring: the more weight 
we add the longer it gets. If we draw a graph of force 
against distance as we stretch a spring, it will look like 
the graph in Figure 2.105. The gradient of this line, F

∆x is 
called the spring constant, k. 

s

FF

θ

Δ

150 N

30°

distance

force

F

 xΔ

Figure 2.103 Force vs 
distance for a constant force.

Figure 2.104 Stretching a 
spring.

∆x

Figure 2.105 Force vs 
extension for a spring.

extension

force

F

 xΔ
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The work done as the spring is stretched is found by calculating the area under the 
graph.
 area = 1

2 base × height = 1
2 FΔx

So  work done = 1
2 FΔx

But if 
F
Δx = k then F = kΔx

Substituting for F gives 

 work done = 1
2 kΔx2

Exercises
44 A spring of spring constant 2 N cm–1 and length 6 cm is 

stretched to a new length of 8 cm.

(a) How far has the spring been stretched?
(b) What force will be needed to hold the spring at this 

length?
(c) Sketch a graph of force against extension for this 

spring.
(d) Calculate the work done in stretching the spring.
(e) The spring is now stretched a further 2 cm. Draw a 

line on your graph to represent this and calculate how 
much additional work has been done.

45 Calculate the work done by the force represented by 
Figure 2.106. Figure 2.106.

Energy
We have seen that it is sometimes possible for body A to do work on body B but what 
does A have that enables it to do work on B? To answer this question we must de� ne a 
new quantity, energy. 

Energy is the quantity that enables body A to do work on body B.

If body A collides with body B as shown in Figure 2.107, body A has done work 
on body B. This means that body B can now do work on body C. Energy has been 
transferred from A to B.

When body A does work on body B, energy is transferred from body A to 
body B.

The unit of energy is the joule (J).

Energy is a scalar quantity.

Different types of energy
If a body can do work then it has energy. There are two ways that a simple body such 
as a red ball can do work. In the example above, body A could do work because it 
was moving – this is called kinetic energy. Figure 2.108 shows an example where A can 
do work even though it isn’t moving. In this example, body A is able to do work on 
body B because of its position above the Earth. If the hand is removed, body A will be 
pulled downwards by the force of gravity, and the string attached to it will then drag 
B along the table. If a body is able to do work because of its position, we say it has 
potential energy.

distance (m)

force

100

200

300

5 10

A

before A hits B

after A hits B

B C

A B C

v

v

 Figure 2.107 The red ball 
gives energy to the blue ball.

B

A

 Figure 2.108.
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Kinetic energy (KE)
This is the energy a body has due to its movement. To give a body KE, work must be 
done on the body. The amount of work done will be equal to the increase in KE. If a 
constant force acts on a red ball of mass m as shown in Figure 2.109, then the work 
done is Fs. 

time = 0 time = t

va

s

F F

Figure 2.109.

From Newton’s second law we know that F = ma which we can substitute in work = Fs 
to give work = mas.

We also know that since acceleration is constant we can use the suvat equation 
v2 = u2 + 2as which since u = 0 simpli� es to v2 = 2as.

Rearranging this gives as = 
v2

2  so work = 1
2 mv2.

This work has increased the KE of the body so we can deduce that:

 KE = 1
2 mv2

Gravitational potential energy (PE)
This is the energy a body has due to its position above the Earth. 

For a body to have PE it must have at some time been lifted to that position. The 
amount of work done in lifting it equals the PE. Taking the example shown in 
Figure 2.110, the work done in lifting the mass, m, to a height h is mgh (this assumes 
that the body is moving at a constant velocity so the lifting force and weight are 
balanced).

If work is done on the body then energy is transferred so:

gain in PE = mgh

The law of conservation of energy
We could not have derived the equations for KE or PE without assuming that the work 
done is the same as the gain in energy. The law of conservation of energy is a formal 
statement of this fact.

Energy can neither be created nor destroyed – it can only be changed from one 
form to another.

This law is one of the most important laws that we use in physics. If it were not true 
you could suddenly � nd yourself at the top of the stairs without having done any work 
in climbing them, or a car suddenly has a speed of 200 km h–1 without anyone touching 
the accelerator pedal. These things just don’t happen, so the laws we use to describe the 
physical world should re� ect that. 

Use of words

If we say a body has 
potential energy it sounds 
as though it has the 
potential to do work. This 
is true, but a body that is 
moving has the potential 
to do work too. This can 
lead to misunderstanding. 
It would have been better 
to call it positional energy.

Other types of PE

In this section we only 
deal with examples 
of PE due to a body’s 
position close to the 
Earth. However there 
are other positions that 
will enable a body to do 
work (for example, in 
an electric fi eld). These 
will be introduced after 
the concept of fi elds 
has been introduced in 
Chapter 6.
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Worked example

A ball of mass 200 g is thrown vertically upwards 
with a velocity of 2 m s–1 as shown in Figure 2.110. 
Use the law of conservation of energy to calculate its 
maximum height. 

Figure 2.110 Work is done 
lifting the ball so it gains PE.

Solution

At the start of its motion the body has KE. This enables the body to do work against 
gravity as the ball travels upwards. When the ball reaches the top, all the KE has been 
converted into PE. So applying the law of conservation of energy:

 loss of KE = gain in PE

 1
2 mv2 = mgh

so h = 
v2

2g = 
22

2 × 10 = 0.2 m

This is exactly the same answer you would get by calculating the acceleration from 
F = ma and using the suvat equations. 

Worked example

A block slides down the frictionless ramp shown in 
Figure 2.111. Use the law of conservation of energy 
to � nd its speed when it gets to the bottom. 

Figure 2.111 As the block slides 
down the slope it gains KE.

Solution

This time the body loses PE and gains KE so applying the law of conservation of 
energy:
 loss of PE = gain of KE

 mgh = 1
2 mv2

So v =     2gh =    (2 × 10 × 5) = 10 m s–1

Again, this is a much simpler way of getting the answer than using components of 
the forces.

2 m s–1KE

PE

h

v
5 m
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Exercises
Use the law of conservation of energy to solve the following:

46 A stone of mass 500 g is thrown off the top of a cliff with a speed 
of 5 m s–1. If the cliff is 50 m high, what is its speed just before it 
hits the ground?

47 A ball of mass 250 g is dropped 5 m onto a spring as shown in 
Figure 2.112.

(a) How much KE will the ball have when it hits the spring?
(b) How much work will be done as the spring is compressed?
(c) If the spring constant is 250 kN m–1, calculate how far the 

spring will be compressed.

Figure 2.112 In this example the spring is compressed, not 
stretched, but Hooke’s law still applies.

48 A ball of mass 100 g is hit vertically upwards with a bat. The bat exerts a constant force of 15 N on the 
ball and is in contact with it for a distance of 5 cm.

(a) How much work does the bat do on the ball?
(b) How high will the ball go?

49 A child pushes a toy car of mass 200 g up a slope. The car has a speed of 2 m s–1 at the bottom of 
the slope.

(a) How high up the slope will the car go?
(b) If the speed of the car were doubled how high would it go now?

Forms of energy
When we are describing the motion of simple red balls there are only two forms of 
energy, KE and PE. However, when we start to look at more complicated systems, we 
discover that we can do work using a variety of different machines, such as petrol 
engine, electric engine, etc. To do work, these machines must be given energy and this 
can come in many forms, for example:

• Petrol             •  Solar             •  Gas             •  Nuclear             •  Electricity

As you learn more about the nature of matter in Chapter 3, you will discover that all of 
these (except solar) are related to either KE or PE of particles. 

Energy conversion
Taking the example of a petrol engine, the energy stored in the petrol is converted to 
mechanical energy of the car by the engine. 1 litre of petrol contains 36 MJ of energy. 
Let’s calculate how far a car could travel at a constant 36 km h−1 on 1 litre of fuel; that’s 
pretty slow but 36 km h−1 is 10 m s−1 so it will make the calculation easier.

The reason a car needs to use energy when travelling at a constant speed is because 
of air resistance. If we look at the forces acting on the car we see that there must be a 
constant forwards force (provided by the friction between tyres and road) to balance 
the air resistance or drag force.

So work is done against the drag force and the energy to do this work comes from the 
petrol. The amount of work done = force × distance travelled. So to calculate the work 
done we need to know the drag force on a car travelling at 36 km h−1. One way to do 
this would be to drive along a � at road at a constant 36 km h−1 and then take your foot 
off the accelerator pedal. The car would then slow down because of the unbalanced 
drag force.

Δx

5 m

Energy conversion
Taking the example of a petrol engine, the energy stored in the petrol is converted to 
mechanical energy of the car by the engine. 1 litre of petrol contains 36 MJ of energy. 
Let’s calculate how far a car could travel at a constant 36 km h
pretty slow but 36 km h

The
of air resistance. If we look at the forces acting on the car we see that there must be a 
constant forwards force (provided by the friction between tyres and road) to balance 
the air resistance or drag force.

So work is done against the drag force and the energy to do this work comes from the 
petrol. The amount of work done = force × distance travelled. So to calculate the work 
done we need to know the drag force on a car travelling at 36 km h

Fd

R
2

R
2

W

FfFd

R

FfW

Figure 2.113 The forces 
acting on a car travelling at 

constant velocity.
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This force will get less as the car slows down but here we will assume it is constant. 
From Newton’s second law we know that F = ma so if we can measure how fast the 
car slows down we can calculate the force. This will depend on the make of car but to 
reduce the speed by 1 m s−1 (about 4 km h−1) would take about 2 s. Now we can do the 
calculation:

 acceleration of car = 
(v − u)

t  = 
(9 − 10)

2  = −0.5 m s−2

 drag force = ma = 1000 × −0.5 = −500 N.

So to keep the car moving at a constant velocity this force would need to be balanced 
by an equal and opposite force F = 500 N.

Work done = force × distance so the distance travelled by the car = 
work done

force .

So if all of the energy in 1 litre of fuel is converted to work the car will move a 
distance = 36 × 106

500  = 72 km. Note that if you reduce the drag force on the car you 
increase the distance it can travel on 1 litre of fuel.

Effi ciency
A very ef� cient road car driven carefully wouldn’t be able to drive much further than 
20 km on 1 litre of fuel so energy must be lost somewhere. One place where the energy 
is lost is in doing work against the friction that exists between the moving parts of 
the engine. Using oil and grease will reduce this but it can never be eliminated. The 
ef� ciency of an engine is de� ned by the equation

 ef� ciency = 
useful work out
total energy in

so if a car travels 20 km at a speed of 10 m s−1 the useful work done by the engine

 = force × distance = 500 × 20000 = 10 MJ.

The total energy put in = 36 MJ so the ef� ciency = 
10
36 = 0.28.

Ef� ciency is often expressed as a percentage so this would be 28%.

Where does all the energy go?
In this example we calculated the energy required to move a car along a � at road. The 
car was travelling at a constant speed so there was no increase in KE and the road 
was � at so there was no increase in PE. We know that energy cannot be created or 
destroyed so where has the energy gone? The answer is that it has been given to the 
particles that make up the air and car. More about that in Chapter 3.

Exercises
50 A 45% efficient machine lifts 100 kg 2 m.

(a) How much work is done by the machine?
(b) How much energy is used by the machine?

51 A 1000 kg car accelerates uniformly from rest to 100 km h−1.

(a) Ignoring air resistance and friction, calculate how much work was done by the car’s engine.
(b) If the car is 60% efficient how much energy in the form of fuel was given to the engine?
(c) If the fuel contains 36 MJ per litre, how many litres of fuel were used?

Figure 2.114 The forces 
on a car travelling at high 
speed with the foot off the 
accelerator pedal.

Fd

R
2

R

a

2

W

Fd

R

W

There has been a lot of 
research into making cars 
more effi cient so that 
they use less fuel. Is this to 
save energy or money?
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Energy and collisions
One of the reasons that we brought up the concept of energy was related to the 
collision between two balls as shown in Figure 2.115. We now know that if no energy 
is lost when the balls collide, then the KE before the collision = KE after. This enables 
us to calculate the velocity afterwards and the only solution in this example is quite 
a simple one. The red ball gives all its KE to the blue one, so the red one stops and the 
blue one continues, with velocity = 10 m s–1. If the balls become squashed, then some 
work needs to be done to squash them. In this case not all the KE is transferred, and 
we can only calculate the outcome if we know how much energy is used in squashing 
the balls.

Elastic collisions
An elastic collision is a collision in which both momentum and KE are conserved. 

Example: two balls with equal mass

Two balls with equal mass m collide as shown in Figure. 2.116. As you can see, the 
red ball is travelling faster than the blue one before and slower after. If the collision 
is perfectly elastic then we can show that the velocities of the balls simply swap so 
u1 = v2 and u2 = v1.

u1 u2 v1 v2

m

before after

m m m

If the collision is elastic then momentum and kinetic energy are both conserved. If we 
consider these one at a time we get:

Conservation of momentum:

 momentum before = momentum after
 mu1 + mu2 = mv1 + mv2

 u1 + u2 = v1 + v2

Conservation of KE:

 KE before = KE after

 1
2 mu1

2 + 1
2 mu2

2 = 1
2 mv1

2 + 1
2 mv2

2

 u1
2

 + u2
2

 = v1
2

 + v2
2

So we can see that the velocities are such that both their sums are equal and the squares 
of their sums are equal. This is only true if the velocities swap, as in Figure 2.117.

5 m s–1

m

4 m s–1

before after

m

4 m s–1

m

5 m s–1

m

 Figure 2.115 The red ball 
gives energy to the blue ball.

10 m s–1

1 kg 1 kg

10 m s–1

Figure 2.116 Collision 
between 2 identical balls..

Figure 2.117 A possible 
elastic collision.
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Collision in 2D between 2 identical balls

Anyone who has ever played pool or snooker will know that balls don’t always collide 
in line, they travel at angles to each other. Figure 2.118 shows a possible collision.

u
v1

v2

m

before after

m

m

m

In this case the blue ball is stationary so applying the conservation laws we get slightly 
simpler equations:

 u→ = v
→

1 + v
→

2

 u→2
 = v

→
1

2
 + v

→
2

2

Note the vector notation to remind us that we are dealing with vectors. The � rst 
equation means that the sum of the velocity vectors after the collision gives the 
velocity before. This can be represented by the triangle of vectors in Figure 2.119.

The second equation tells us that the sum of the squares of two sides of this 
triangle = the square of the other side. This is Pythagoras’ theorem which is only true 
for right-angled triangles. So, after an elastic collision between two identical balls the 
two balls will always travel away at right angles (unless the collision is perfectly head 
on). This of course doesn’t apply to balls rolling on a pool table since they are not 
isolated.

Inelastic collisions
There are many outcomes of an inelastic collision but here we will only consider the 
case when the two bodies stick together. We call this totally inelastic collision. 

Example

When considering the conservation of momentum in collisions, we used the example 
shown in Figure 2.120. How much work was done to squash the balls in this example?

6 m s–1

100 g

1 m s–1

before after

500 g

According to the law of conservation of energy, the work done squashing the balls is 
equal to the loss in KE. 

 KE loss = KE before – KE after = 1
2 × 0.1 × 62 – 1

2 × 0.6 × 12

 KE loss = 1.8 – 0.3 = 1.5 J
So work done = 1.5 J

Figure 2.118 A 2D collision.

u

v1 v2

Figure 2.119 Adding the 
velocity vectors.

Pool balls may not collide 
like perfectly elastic 
isolated spheres but if 
the table is included their 
motion can be accurately 
modelled enabling 
scientists to calculate the 
correct direction and 
speed for the perfect 
shot. Taking that shot is 
another matter entirely.

Figure 2.120.
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Explosions
Explosions can never be elastic since, without doing work, the parts that � y off after the 
explosion would not have any KE and would therefore not be moving. The energy to 
initiate an explosion often comes from the chemical energy contained in the explosive.

Example

Again consider a previous example where a ball exploded (shown again in 
Figure 2.121). How much energy was supplied to the balls by the explosive?

5 m s–125 m s–1

before after

120 g 20 g 100 g

According to the law of conservation of energy, the energy from the explosive equals 
the gain in KE of the balls.

 KE gain = KE after – KE before

 KE gain = (1
2 × 0.02 × 252 + 1

2 × 0.1 × 52) – 0 = 6.25 + 1.25 = 7.5 J

Exercises
52 Two balls are held together by a spring as shown in Figure 2.122. 

The spring has a spring constant of 10 N cm–1 and has been 
compressed a distance 5 cm.

Figure 2.122.
(a) How much work was done to compress the spring?
(b) How much KE will each gain?
(c) If each ball has a mass of 10 g calculate the velocity of each ball.

53 Two pieces of modelling clay as shown in Figure 2.123 collide 
and stick together.

Figure 2.123.

(a) Calculate the velocity of the lump after the collision.
(b) How much KE is lost during the collision?

54 A red ball travelling at 10 m s–1 to the right collides with a blue ball with the same mass travelling at 
15 m s–1 to the left. If the collision is elastic, what are the velocities of the balls after the collision?

Power
We know that to do work requires energy, but work can be done quickly or it can be 
done slowly. This does not alter the energy exchanged but the situations are certainly 
different. For example we know that to lift one thousand 1 kg bags of sugar from the 
� oor to the table is not an impossible task – we can simply lift them one by one. It will 
take a long time but we would manage it in the end. However, if we were asked to do 
the same task in 5 seconds, we would either have to lift all 1000 kg at the same time 
or move each bag in 0.005 s, both of which are impossible. Power is the quantity that 
distinguishes between these two tasks.

Figure 2.121.

Sharing of energy

The result of this 
example is very 
important; we will use 
it when dealing with 
nuclear decay later on. 
So remember, when a 
body explodes into two 
unequal bits, the small 
bit gets most energy.

CHALLENGE 
YOURSELF
2 A 200 g red ball travelling at 

6 m s−1 collides with a 500 g 
blue ball at rest, such that 
after the collision the red 
ball travels at 4 m s−1 at an 
angle of 45° to its original 
direction. Calculate the 
speed of the blue ball.

10 m s–1 15 m s–1

2 kg 10 kg

Power and velocity

If power = work done
time  

then we can also write 

 P = F∆s
t  

so P = F ∆s
t  

which is the same as 

 P = Fv 

where v is the velocity.
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Power is de� ned as:

power = work done per unit time.

Unit of power is the J s–1 which is the same as the watt (W).

Power is a scalar quantity.

Example 1: The powerful car

We often use the term power to describe cars. A powerful car is one that can accelerate 
from 0 to 100 km h–1 in a very short time. When a car accelerates, energy is being 
converted from the chemical energy in the fuel to KE. To have a big acceleration the car 
must gain KE in a short time, hence be powerful.

Example 2: Power lifter

A power lifter is someone who can lift heavy weights, so shouldn’t we say they are strong 
people rather than powerful? A power lifter certainly is a strong person (if they are good 
at it) but they are also powerful. This is because they can lift a big weight in a short time.

Worked example

A car of mass 1000 kg accelerates from rest to 100 km h–1 in 5 seconds. What is the 
average power of the car?

Solution

 100 km h–1 = 28 m s–1.

The gain in KE of the car = 1
2 mv2 = 1

2 × 1000 × 282 = 392 kJ

If the car does this in 5 s then

 power = 
work done

time  = 
392

5  = 78.4 kW

Exercises
55 A weightlifter lifts 200 kg 2 m above the ground in 5 s. Calculate the power of the weightlifter in watts.

56 In 25 s a trolley of mass 50 kg runs down a hill. If the difference in height between the top and the 
bottom of the hill is 50 m, how much power will have been dissipated?

57 A car moves along a road at a constant velocity of 20 m s–1. If the resistance force acting against the car 
is 1000 N, what is the power developed by the engine?

Effi ciency and power
We have de� ne ef� ciency by the equation:

 ef� ciency = 
useful work out

work in
If the work out is done at the same time as the work in then we can also write:

 ef� ciency = 
useful power out

total power in

Exercises
58 A motor is used to lift a 10 kg mass 2 m above the ground in 4 s. If the power input to the motor is 

100 W, what is the efficiency of the motor?

59 A motor is 70% efficient. If 60 kJ of energy is put into the engine, how much work is got out?

60 The drag force that resists the motion of a car travelling at 80 km h–1 is 300 N. 

(a) What power is required to keep the car travelling at that speed?
(b) If the efficiency of the engine is 60%, what is the power of the engine?

Horse power

Horse power is often 
used as the unit for power 
when talking about cars 
and boats.

746 W = 1 hp

So in Worked example 
1, the power of the car is 
105 hp.
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Practice questions

1. This question is about linear motion.
 A police car P is stationary by the side of a road. A car S, exceeding the speed limit, passes the 

police car P at a constant speed of 18 m s–1. The police car P sets off to catch car S just as car S 
passes the police car P. Car P accelerates at 4.5 m s–2 for a time of 6.0 s and then continues at 
constant speed. Car P takes a time t seconds to draw level with car S.

(a) (i) State an expression, in terms of t, for the distance car S travels in t seconds. (1)

 (ii) Calculate the distance travelled by the police car P during the fi rst 6.0 seconds 
of its motion. (1)

 (iii) Calculate the speed of the police car P after it has completed its acceleration. (1)

 (iv) State an expression, in terms of t, for the distance travelled by the police car P 
during the time that it is travelling at constant speed. (1)

(b) Using your answers to (a), determine the total time t taken for the police car P to draw 
level with car S. (2)

(Total 6 marks)

2. This question is about the kinematics of an elevator (lift).

(a) Explain the difference between the gravitational mass and the inertial mass of an object. (3)

 An elevator (lift) starts from rest on the ground fl oor and comes to rest at a higher fl oor. Its 
motion is controlled by an electric motor. Figure 2.124 is a simplifi ed graph of the variation 
of the elevator’s velocity with time.

4.0 8.0
time/s

velocity
/m s–1

12.03.0 7.0 11.02.0 6.0 10.01.00.0 5.0 9.0
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Figure 2.124.

(b) The mass of the elevator is 250 kg. Use this information to calculate:

(i) the acceleration of the elevator during the fi rst 0.50 s. (2)

(ii) the total distance travelled by the elevator. (2)

(iii) the minimum work required to raise the elevator to the higher fl oor. (2)

(iv) the minimum average power required to raise the elevator to the higher fl oor. (2)
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(v) the effi ciency of the electric motor that lifts the elevator, given that the input power to 
the motor is 5.0 kW. (2)

(c) Copy Figure 2.125 and, on the graph axes, sketch a realistic variation of velocity for the 
elevator. Explain your reasoning. (The simplifi ed version is shown as a dotted line.)

4.0 8.0
time/s

velocity
/m s–1

12.03.0 7.0 11.02.0 6.0 10.01.00.0 5.0 9.0
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Figure 2.125.

 (2)

 The elevator is supported by a cable. Figure 2.126 is a free body force 
diagram for when the elevator is moving upwards during the fi rst 0.50 s.

Figure 2.126.

(d) Copy Figures 2.127 and 2.128 and in the space below each box, draw free body force 
diagrams for the elevator during the following time intervals.

(i) 0.5 to 11.50 s   (ii) 11.50 to 12.00 s

 Figure 2.127. Figure 2.128. (3)

 A person is standing on weighing scales in the elevator. Before the elevator rises, the reading on 
the scales is W.

(e) Copy Figure 2.129 and on the axes, sketch a graph to show how the reading on the scales 
varies during the whole 12.00 s upward journey of the elevator. (Note that this is a sketch 
graph – you do not need to add any values.)

tension

weight
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4.0 8.0
time/s

reading on
scales

12.03.0 7.0 11.02.0 6.0 10.01.00.0 5.0 9.0
0.00

W

Figure 2.129.

 (3)

(f) The elevator now returns to the ground fl oor where it comes to rest. Describe and explain 
the energy changes that take place during the whole up-and-down journey. (4)

(Total 25 marks)

3. This question is about throwing a stone from a cliff.
 Antonia stands at the edge of a vertical cliff and 

throws a stone vertically upwards.
 The stone leaves Antonia’s hand with a speed 

v = 8.0 m s–1.
 The acceleration of free fall g is 10 m s–2 and all 

distance measurements are taken from the point 
where the stone leaves Antonia’s hand.

Figure 2.130.

v = 8.0 m s–1

sea

(a) Ignoring air resistance calculate:

(i) the maximum height reached by the stone. (2)

(ii) the time taken by the stone to reach its maximum height. (1)

 The time between the stone leaving Antonia’s hand and hitting the sea is 3.0 s.

(b) Determine the height of the cliff. (3)

(Total 6 marks)

4. This question is about conservation of momentum and conservation of energy.

(a) State Newton’s third law. (1)

(b) State the law of conservation of momentum. (2)
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 Figure 2.131 shows two identical balls A and B on 
a horizontal surface. Ball B is at rest and ball A is 
moving with speed V along a line joining the centres 
of the balls. The mass of each ball is M.

Figure 2.131.

v
before collision

A B

 During the collision of the balls, the magnitude of the force that ball A exerts on ball B is FAB and 
the magnitude of the force that ball B exerts on ball A is FBA.

(c) Copy Figure 2.132 and on the diagram, add 
labelled arrows to represent the magnitude and 
direction of the forces FAB and FBA.

Figure 2.132.

during the collision

A B

 (3)
 The balls are in contact for a time Δt. After the 

collision, the speed of ball A is + vA and the speed 
of ball B is + vB in the directions shown in Figure 
2.133.

Figure 2.133.

after the collision

A B

vA vB

 As a result of the collision, there is a change in momentum of ball A and of ball B.

(d) Use Newton’s second law of motion to deduce an expression relating the forces acting 
during the collision to the change in momentum of

(i) ball B. (2)

(ii) ball A. (2)

(e) Apply Newton’s third law and your answers to (d), to deduce that the change in momentum 
of the system (ball A and ball B) as a result of this collision, is zero. (4)

(f) Deduce, that if kinetic energy is conserved in the collision, then after the collision ball A will 
come to rest and ball B will move with speed V. (3)

5. This question is about the collision between two railway trucks (carts).

(a) Defi ne linear momentum. (1)

 In Figure 2.134, railway truck A is moving along 
a horizontal track. It collides with a stationary 
truck B and on collision, the two join together. 
Immediately before the collision, truck A is moving 
with speed 5.0 m s–1. Immediately after collision, 
the speed of the trucks is v.

 Figure 2.134.

v

5 m s–1

A
B

immediately before collision

A
B

immediately after collision

 The mass of truck A is 800 kg and the mass of truck B is 1200 kg.

(b) (i) Calculate the speed v immediately after the collision. (3)

 (ii) Calculate the total kinetic energy lost during the collision. (2)

(c) Suggest what has happened to the lost kinetic energy. (2)

(Total 8 marks)
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6. This question is about estimating the energy changes for an escalator (moving staircase).
 Figure 2.135 represents an 

escalator. People step on to 
it at point A and step off at 
point B.

Figure 2.135.

30 m

40°

B

A

(a) The escalator is 30 m long and makes an angle of 40° with the horizontal. At full capacity, 48 
people step on at point A and step off at point B every minute.

(i) Calculate the potential energy gained by a person of weight 700 N in moving 
from A to B. (2)

(ii) Estimate the energy supplied by the escalator motor to the people every minute 
when the escalator is working at full capacity. (1)

(iii) State one assumption that you have made to obtain your answer to (ii). (1)

 The escalator is driven by an electric motor that has an effi ciency of 70%.

(b) (i) Using your answer to (a)(ii), calculate the minimum input power required by the 
motor to drive the escalator. (3)

 (ii) Explain why it is not necessary to take into account the weight of the escalator when 
calculating the input power. (1)

(c) Explain why in practice, the power of the motor will need to be greater than that calculated 
in (b)(i). (1)

(Total 9 marks)

7. This question is about collisions.

(a) State the principle of conservation of momentum. (2)

(b) In an experiment, an air-rifl e pellet is fi red into a block of modelling clay that rests on a table.

2.8 m

clay block
path of air-rifle pellet

Figure 2.136. (not to scale)

 The air-rifl e pellet remains inside the clay block after the impact.

 As a result of the collision, the clay block slides along the table in a straight line and comes 
to rest. Further data relating to the experiment are given below.

  Mass of air-rifl e pellet = 2.0 g
  Mass of clay block = 56 g
  Velocity of impact of air-rifl e pellet = 140 m s–1

  Stopping distance of clay block = 2.8 m

(i) Show that the initial speed of the clay block after the air-rifl e pellet strikes it is 4.8 m s–1.
 (2)
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(ii) Calculate the average frictional force that the surface of the table exerts on the clay 
block whilst the clay block is moving. (4)

(c) The experiment is repeated with the clay block placed at the edge of the table so that it is 
fi red away from the table. The initial speed of the clay block is 4.3 m s–1 horizontally. The 
table surface is 0.85 m above the ground.

0.85 m

clay block

path

ground

table

Figure 2.137.
(not to scale)

(i) Ignoring air resistance, calculate the horizontal distance travelled by the clay block 
before it strikes the ground. (4)

(ii) Figure 2.137 shows the path of the clay block neglecting air resistance. Copy the 
diagram, and on it, draw the approximate shape of the path that the clay block will take 
assuming that air resistance acts on the clay block. (3)

(Total 15 marks) 
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