Chapter 7

Preview

- Lesson Starter
- Objectives
- Significance of a Chemical Formula
- Monatomic lons
- Binary lonic Compounds
- Writing the Formula of an lonic Compound
- Naming Binary Ionic Compounds
- Naming Binary Molecular Compounds
- Covalent-Network Compounds
- Acids and Salts
© HOLT, RINEHART AND WINSTON, All Rights Reserved

Chapter 7

Lesson Starter v

- $\mathrm{CCl}_{4} \quad \mathrm{MgCl}_{2}$ -
- Guess the name of each of the above compounds based on the formulas written. -
- What kind of information can you discern from the formulas? v
- Guess which of the compounds represented is molecular and which is ionic. -
- Chemical formulas form the basis of the language of chemistry and reveal much information about the substances they represent.

Chapter 7

Section 1 Chemical Names and Formulas

Objectives .

- Explain the significance of a chemical formula. v
- Determine the formula of an ionic compound formed between two given ions. -
- Name an ionic compound given its formula. -
- Using prefixes, name a binary molecular compound from its formula. v
- Write the formula of a binary molecular compound given its name.

Chapter 7

Significance of a Chemical Formula -

- A chemical formula indicates the relative number of atoms of each kind in a chemical compound. .
- For a molecular compound, the chemical formula reveals the number of atoms of each element contained in a single molecule of the compound. v
- example: octane $-\mathrm{C}_{8} \mathrm{H}_{18}$.

The subscript after the C indicates that there are 8 carbon atoms in the molecule. マ

The subscript after the H indicates that there are 18 hydrogen atoms in the molecule.

Chapter 7
 Section 1 Chemical Names and Formulas

Significance of a Chemical Formula, continued ,

- The chemical formula for an ionic compound represents one formula unit-the simplest ratio of the compound's positive ions (cations) and its negative ions (anions). -
- example: aluminum sulfate $-\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ -
- Parentheses surround the polyatomic ion SO_{4}^{2-} to identify it as a unit. The subscript 3 refers to the unit. v
- Note also that there is no subscript for sulfur: when there is no subscript next to an atom, the subscript is understood to be 1 .

Section 1 Chemical Names and
 Chapter 7

Reading Chemical Formulas

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Monatomic lons ,

- Many main-group elements can lose or gain electrons to form ions. .
- Ions formed form a single atom are known as monatomic ions.
- example: To gain a noble-gas electron configuration, nitrogen gains three electrons to form N^{3-} ions.
- Some main-group elements tend to form covalent bonds instead of forming ions. -
- examples: carbon and silicon

Chapter 7

Monatomic lons, continued
 Naming Monatomic lons ,

- Monatomic cations are identified simply by the element's name. v
- examples:
- K^{+}is called the potassium cation \checkmark
- Mg^{2+} is called the magnesium cation ∇
- For monatomic anions, the ending of the element's name is dropped, and the ending -ide is added to the root name. ${ }^{-}$
- examples:
- F- is called the fluoride anion ∇
- N^{3-} is called the nitride anion

Chapter 7

Common Monatomic lons

Main-group elements

1+ 2+
2+
3+

lithium	Li^{+}	beryllium	Be^{2+}			
sodium	Na^{+}	magnesium	Mg^{2+}	aluminum	Al^{3+}	
potassium	K^{+}	calcium	Ca^{2+}			
rubidium	Rb^{+}	strontium	Sr^{2+}			
cesium	Cs^{+}	barium	Ba^{2+}			
1-						
			2-			3-
fluoride	F^{-}	oxide	O^{2-}	nitride	N^{3-}	
chloride	Cl^{-}	sulfide	S^{2-}	phosphide	P^{3-}	
bromide	Br^{-}					
iodide	I^{-}					

Common Monatomic Ions

d-Block elements 1+	2+		3+		4+	
			vanadium(III)	V^{3+}	vanadium(IV)	V^{4+}
copper(I) Cu^{+}	vanadium(II)	V^{2+}	chromium(III)	Cr^{3+}	tin(IV)	Sn^{4+}
silver Ag^{+}	chromium(II)	Cr^{2+}	iron(III)	Fe^{3+}	lead(IV)	Pb^{4+}
	manganese(II)	Mn^{2+}	cobalt(III)	Co^{3+}		
	iron(II)	Fe^{2+}				
	cobalt(II)	Co^{2+}				
	nickel(II)	Ni^{2+}				
	copper(II)	Cu^{2+}				
	zinc	Zn^{2+}				
	cadmium	Cd^{2+}				
	tin(II)	Sn^{2+}				
	mercury(II)	Hg^{2+}				
	lead(II)	Pb^{2+}				

Chapter 7

 Formulas
Naming Monatomic lons

Click below to watch the Visual Concept.

Visual Concept

Chapter 7
 Section 1 Chemical Names and Formulas

Binary lonic Compounds v

- Compounds composed of two elements are known as binary compounds. v
- In a binary ionic compound, the total numbers of positive charges and negative charges must be equal. .
- The formula for a binary ionic compound can be written given the identities of the compound's ions.
- example: magnesium bromide lons combined: $\mathrm{Mg}^{2+}, \mathrm{Br}^{-}, \mathrm{Br}^{-}$ Chemical formula: MgBr_{2}

Chapter 7
 Section 1 Chemical Names and Formulas

Binary lonic Compounds, continued

- A general rule to use when determining the formula for a binary ionic compound is "crossing over" to balance charges between ions. -
- example: aluminum oxide

1) Write the symbols for the ions.

$$
\mathrm{Al}^{3+} \mathrm{O}^{2-}
$$

2) Cross over the charges by using the absolute value of $\mathrm{Al}_{2}^{3+} \mathrm{O}_{3}^{2-}$ each ion's charge as the subscript for the other ion.

Chapter 7
 Section 1 Chemical Names and Formulas

Binary lonic Compounds, continued v

- example: aluminum oxide, continued v

$$
\mathrm{Al}_{2}^{3+} \mathrm{O}_{3}^{2-}
$$

3) Check the combined positive and negative charges to see if they are equal.

$$
(2 \times 3+)+(3 \times 2-)=0
$$

The correct formula is $\mathrm{Al}_{2} \mathrm{O}_{3}$

Writing the Formula of an lonic Compound

Follow the following steps when writing the formula of a binary ionic compound, such as iron(III) oxide.

- Write the symbol and charges for the cation and anion.

The roman numeral indicates which cation iron forms.

$$
\text { symbol for iron(III): } \mathrm{Fe}^{3+} \quad \text { symbol for oxide: } \mathrm{O}^{2-}
$$

- Write the symbols for the ions side by side, beginning with the cation.

$$
\mathrm{Fe}^{3+} \mathrm{O}^{2-}
$$

- To determine how to get a neutral compound, look for the lowest common multiple of the charges on the ions. The lowest common multiple of 3 and 2 is 6 . Therefore, the formula should indicate six positive charges and six negative charges.
For six positive charges, you need two Fe^{3+} ions because $2 \times 3+=6+$. For six negative charges, you need three O^{2-} ions because $3 \times 2-=6-$. Therefore the ratio of Fe^{3+} to O^{2-} is $2 \mathrm{Fe}: 3 \mathrm{O}$. The formula is written as follows.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Chapter 7
 Section 1 Chemical Names and Formulas

Naming Binary lonic Compounds .

- The nomenclature, or naming system, or binary ionic compounds involves combining the names of the compound's positive and negative ions. v
- The name of the cation is given first, followed by the name of the anion: \downarrow
- example: $\mathrm{Al}_{2} \mathrm{O}_{3}$ - aluminum oxide ∇
- For most simple ionic compounds, the ratio of the ions is not given in the compound's name, because it is understood based on the relative charges of the compound's ions.

Section 1 Chemical Names and Formulas

Chapter 7

Naming lonic Compounds

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Naming Binary lonic Compounds, continued

Sample Problem A v
Write the formulas for the binary ionic compounds formed between the following elements:
a. zinc and iodine
b. zinc and sulfur

Naming Binary Ionic Compounds, continued

 Sample Problem A SolutionWrite the symbols for the ions side by side. Write the cation first. -
a. $\mathrm{Zn}^{2+} \mathrm{I}^{-}$
b. $\mathrm{Zn}^{2+} \mathrm{S}^{2-}$,

Cross over the charges to give subscripts. v
a. $\mathrm{Zn}_{1}^{2+} \mathrm{F}_{2}$
b. $\mathrm{Zn}_{2}^{2+} \mathrm{S}_{2}^{2-}$

Chapter 7
 Section 1 Chemical Names and Formulas

Naming Binary lonic Compounds, continued

Sample Problem A Solution, continued V
Check the subscripts and divide them by their largest common factor to give the smallest possible wholenumber ratio of ions. v
a. The subscripts give equal total charges of $1 \times 2+=$ $2+$ and 2×1 - = 2-.

The largest common factor of the subscripts is 1 . .
The smallest possible whole-number ratio of ions in the compound is 1:2.

The formula is ZnI_{2}.

Naming Binary lonic Compounds, continued

Sample Problem A Solution, continued \checkmark
b. The subscripts give equal total charges of $2 \times 2+=$ $4+$ and $2 \times 2-=4-$.

The largest common factor of the subscripts is 2 . -
The smallest whole-number ratio of ions in the compound is 1:1.

The formula is ZnS .

Chapter 7

Section 1 Chemical Names and Formulas

Naming Binary lonic Compounds, continued

The Stock System of Nomenclature

- Some elements such as iron, form two or more cations with different charges. .
- To distinguish the ions formed by such elements, scientists use the Stock system of nomenclature. -
- The system uses a Roman numeral to indicate an ion's charge. .
- examples: Fe^{2+} iron(II) v
Fe^{3+} iron(III)

Chapter 7

Naming Compounds Using the Stock System

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Section 1 Chemical Names and Formulas

Naming Binary lonic Compounds, continued The Stock System of Nomenclature, continued

Sample Problem B •

Write the formula and give the name for the compound formed by the ions Cr^{3+} and F^{-}.

Chapter 7

Section 1 Chemical Names and Formulas

Naming Binary lonic Compounds, continued

 The Stock System of Nomenclature, continued Sample Problem B SolutionWrite the symbols for the ions side by side. Write the cation first. -

$$
\mathrm{Cr}^{3+} \mathrm{F}^{-}
$$

Cross over the charges to give subscripts. -

$$
\mathrm{Cr}_{1}^{3+} \mathrm{F}_{3}^{-}
$$

Chapter 7

Section 1 Chemical Names and Formulas

Naming Binary lonic Compounds, continued The Stock System of Nomenclature, continued Sample Problem B Solution, continued \downarrow

The subscripts give charges of $1 \times 3+=3+$ and $3 \times 1-=3-$.

The largest common factor of the subscripts is 1 , so the smallest whole number ratio of the ions is 1:3.

The formula is CrF_{3}.

Chapter 7

Section 1 Chemical Names and Formulas

Naming Binary lonic Compounds, continued The Stock System of Nomenclature, continued

 Sample Problem B Solution, continued v Chromium forms more than one ion, so the name of the $3+$ chromium ion must be followed by a Roman numeral indicating its charge. .The compound's name is chromium(III) fluoride.

Chapter 7

Naming Binary lonic Compounds, continued

 Compounds Containing Polyatomic lons v- Many common polyatomic ions are oxyanionspolyatomic ions that contain oxygen. v
- Some elements can combine with oxygen to form more than one type of oxyanion. -
- example: nitrogen can form NO_{3}^{-}or NO_{2}^{-}.
- The name of the ion with the greater number of oxygen atoms ends in -ate. The name of the ion with the smaller number of oxygen atoms ends in -ite. -

$$
\mathrm{NO}_{3}^{-} \quad \begin{aligned}
& \text { nitrate } \\
& \\
& \\
& \\
& \mathrm{NO}_{2}^{-}
\end{aligned}
$$

Chapter 7

Naming Binary lonic Compounds, continued Compounds Containing Polyatomic lons, continued v

- Some elements can form more than two types of oxyanions.
- example: chlorine can form $\mathrm{ClO}^{-}, \mathrm{ClO}_{2}^{-}, \mathrm{ClO}_{3}^{-}$or ClO_{4}^{-}. .
- In this case, an anion that has one fewer oxygen atom than the -ite anion has is given the prefix hypo-.
- An anion that has one more oxygen atom than the -ate anion has is given the prefix per-. $>$

$$
\mathrm{ClO}^{-} \quad \mathrm{ClO}_{2}^{-} \quad \mathrm{ClO}_{3}^{-} \quad \mathrm{ClO}_{4}^{-}
$$

hypochlorite chlorite chlorate perchlorate

Chapter 7

Polyatomic Ions

1+		2+			
ammonium	NH_{4}^{+}	dimercury*	Hg_{2}^{2+}		
1-		2-		3-	
acetate	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	carbonate	CO_{3}^{2-}	arsenate	AsO_{4}^{3-}
bromate	BrO_{3}^{-}	chromate	CrO_{4}^{2-}	phosphate	PO_{4}^{3-}
chlorate	ClO_{3}^{-}	dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$		
chlorite	ClO_{2}^{-}	hydrogen phosphate	HPO_{4}^{2-}		
cyanide	CN^{-}	oxalate	$\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$		
dihydrogen phosphate	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	peroxide	O_{2}^{2-}		
hydrogen carbonate (bicarbonate)	HCO_{3}^{-}	sulfate	SO_{4}^{2-}		
hydrogen sulfate	HSO_{4}^{-}	sulfite	SO_{3}^{2-}		
hydroxide	OH^{-}				
hypochlorite	ClO^{-}				
nitrate	NO_{3}^{-}				
nitrite	NO_{2}^{-}				
perchlorate	ClO_{4}^{-}				
permanganate	MnO_{4}^{-}				
*The mercury($)$ cation exists as two Hg^{+}ions joined together by a covalent bond and is written as Hg_{2}^{2+}.					

Naming Compounds with Polyatomic lons

Follow these steps when naming an ionic compound that contains one or more polyatomic ions, such as $\mathrm{K}_{2} \mathrm{CO}_{3}$.

- Name the cation. Recall that a cation is simply the name of the element. In this formula, K is potassium that forms a singly charged cation, K^{+}, of the same name.
- Name the anion. Recall that salts are electrically neutral. Because there are two K^{+}cations present in this salt, these two positive charges must be balanced by two negative charges. Therefore, the polyatomic anion in this salt must be CO_{3}^{2-}. You may find it helpful to think of the formula as follows, although it is not written this way.

$$
\left(\mathrm{K}^{+}\right)_{2}\left(\mathrm{CO}_{3}^{2-}\right)
$$

The CO_{3}^{2-} polyatomic ion is called carbonate.

- Name the salt. Recall that the name of a salt is just the names of the cation and anion. The salt $\mathrm{K}_{2} \mathrm{CO}_{3}$ is potassium carbonate.

Chapter 7

Formulas

Understanding Formulas for Polyatomic Ionic Compounds

a Elements in polyatomic ions are bound together in a group and carry a characteristic charge.

Chapter 7

 Formulas
Naming Compounds Containing Polyatomic lons

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Section 1 Chemical Names and Formulas

Naming Binary lonic Compounds, continued Compounds Containing Polyatomic Ions, continued

Sample Problem C v

Write the formula for tin(IV) sulfate.

Chapter 7

Section 1 Chemical Names and Formulas

Naming Binary lonic Compounds, continued

 Compounds Containing Polyatomic lons, continued Cross over the charges to give subscripts. Add parentheses around the polyatomic ion if necessary. v$$
\mathrm{Sn}^{4+} \mathrm{SO}_{4}^{2-}
$$

Cross over the charges to give subscripts. Add parentheses around the polyatomic ion if necessary.

$$
\mathrm{Sn}_{2}^{4+}\left(\mathrm{SO}_{4}\right)_{4}^{2}
$$

Chapter 7

Section 1 Chemical Names and Formulas

Naming Binary lonic Compounds, continued

 Compounds Containing Polyatomic lons, continued Sample Problem C Solution, continuedThe total positive charge is $2 \times 4+=8+$.
The total negative charge is $4 \times 2-=8-$. .
The largest common factor of the subscripts is 2 , so the smallest whole-number ratio of ions in the compound is 1:2. -

The correct formula is therefore

```
Sn(SO4)
```


Chapter 7

Section 1 Chemical Names and Formulas

Naming Binary Molecular Compounds .

- Unlike ionic compounds, molecular compounds are composed of individual covalently bonded units, or molecules. -
- As with ionic compounds, there is also a Stock system for naming molecular compounds. -
- The old system of naming molecular compounds is based on the use of prefixes. -
- examples: $\mathrm{CCl}_{4}-$ carbon tetrachloride (tetra- $=4$)

CO - carbon monoxide (mon- = 1)
$\mathrm{CO}_{2}-$ carbon dioxide $(d i-=2)$

Prefixes for Naming Covalent Compounds

Prefix	Number of Atoms	Example	Name
mono-	1	CO	carbon monoxide
di-	2	SiO_{2}	silicon dioxide
tri-	3	SO_{3}	sulfur trioxide
tetra-	4	SCl_{4}	sulfur tetrachloride
penta-	5	SbCl_{5}	antimony pentachloride
Prefix	Number of Atoms	Example	Name
hexa-	6	CeB_{6}	cerium hexaboride
hepta-	7	IF_{7}	iodine heptafluoride
octa-	8	$\mathrm{~Np}_{3} \mathrm{O}_{8}$	trineptunium octoxide
nona-	9	$\mathrm{I}_{4} \mathrm{O}_{9}$	tetraiodine nonoxide
deca-	10	$\mathrm{~S}_{2} \mathrm{~F}_{10}$	disulfur decafluoride

Chapter 7

 Formulas
Naming Covalently-Bonded Compounds

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

 Formulas
Naming Compounds Using Numerical Prefixes

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Naming Binary Molecular Compounds, continued

Sample Problem D v
a. Give the name for $\mathrm{As}_{2} \mathrm{O}_{5}$.
b. Write the formula for oxygen difluoride.

Naming Binary Molecular Compounds, continued
 Sample Problem D Solution ,

a. A molecule of the compound contains two arsenic atoms, so the first word in the name is diarsenic. .

The five oxygen atoms are indicated by adding the prefix pent- to the word oxide. -

The complete name is diarsenic pentoxide.

Naming Binary Molecular Compounds, continued
 Sample Problem D Solution, continued v
 b. Oxygen is first in the name because it is less electronegative than fluorine. .

Because there is no prefix, there must be only one oxygen atom. \checkmark

The prefix di- in difluoride shows that there are two fluorine atoms in the molecule. -

The formula is OF_{2}.

Chapter 7
 Section 1 Chemical Names and Formulas

Covalent-Network Compounds •

- Some covalent compounds do not consist of individual molecules. -
- Instead, each atom is joined to all its neighbors in a covalently bonded, three-dimensional network. -
- Subscripts in a formula for covalent-network compound indicate smallest whole-number ratios of the atoms in the compound. -
- examples: SiC, silicon carbide
SiO_{2}, silicon dioxide
$\mathrm{Si}_{3} \mathrm{~N}_{4}$, trisilicon tetranitride.

Chapter 7

Acids and Salts

- An acid is a certain type of molecular compound. Most acids used in the laboratory are either binary acids or oxyacids.
- Binary acids are acids that consist of two elements, usually hydrogen and a halogen.
- Oxyacids are acids that contain hydrogen, oxygen, and a third element (usually a nonmetal).

Chapter 7

Acids and Salts, continued v

- In the laboratory, the term acid usually refers to a solution in water of an acid compound rather than the acid itself. -
- example: hydrochloric acid refers to a water solution of the molecular compound hydrogen chloride, HCl マ
- Many polyatomic ions are produced by the loss of hydrogen ions from oxyacids.
- examples: $\mathbf{~}$

sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfate	SO_{4}^{2-}
nitric acid	HNO_{3}	nitrate	NO_{3}^{-}
phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	phosphate	PO_{4}^{3-}

Chapter 7

Acids and Salts, continued

- An ionic compound composed of a cation and the anion from an acid is often referred to as a salt. -
- examples: ,
- Table salt, NaCl , contains the anion from hydrochloric acid, HCl. •
- Calcium sulfate, CaSO_{4}, is a salt containing the anion from sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
- The bicarbonate ion, HCO_{3}^{-}, comes from carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$.

Section 1 Chemical Names and Formulas

Chapter 7

Naming Binary Acids

Click below to watch the Visual Concept.

Visual Concept

Section 1 Chemical Names and Formulas

Chapter 7

Naming Oxyacids

Click below to watch the Visual Concept.

Visual Concept

Section 1 Chemical Names and Formulas

Salt

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

 Formulas
Prefixes and Suffixes for Oxyanions and Related Acids

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Preview

- Lesson Starter
- Objectives
- Oxidation Numbers
- Assigning Oxidation Numbers
- Using Oxidation Numbers for Formulas and Names

Chapter 7

Section 2 Oxidation Numbers

Lesson Starter .

- It is possible to determine the charge of an ion in an ionic compound given the charges of the other ions present in the compound. v
- Determine the charge on the bromide ion in the compound NaBr given that Na^{+}has a $1+$ charge. v
- Answer: The total charge is 0 , so Br - must have a charge of 1 - in order to balance the $1+$ charge of Na^{+}.

Chapter 7

Section 2 Oxidation Numbers

Lesson Starter, continued ,

- Numbers called oxidation numbers can be assigned to atoms in order to keep track of electron distributions in molecular as well as ionic compounds.

Chapter 7

Section 2 Oxidation Numbers

Objectives .

- List the rules for assigning oxidation numbers. v
- Give the oxidation number for each element in the formula of a chemical compound. v
- Name binary molecular compounds using oxidation numbers and the Stock system.

Chapter 7

Section 2 Oxidation Numbers

Oxidation Numbers .

- The charges on the ions in an ionic compound reflect the electron distribution of the compound. .
- In order to indicate the general distribution of electrons among the bonded atoms in a molecular compound or a polyatomic ion, oxidation numbers are assigned to the atoms composing the compound or ion.
- Unlike ionic charges, oxidation numbers do not have an exact physical meaning: rather, they serve as useful "bookkeeping" devices to help keep track of electrons.

Chapter 7

Section 2 Oxidation Numbers

Assigning Oxidation Numbers

- In general when assigning oxidation numbers, shared electrons are assumed to "belong" to the more electronegative atom in each bond. -
- More-specific rules are provided by the following guidelines. .

1. The atoms in a pure element have an oxidation number of zero. -
examples: all atoms in sodium, Na , oxygen, O_{2}, phosphorus, P_{4}, and sulfur, S_{8}, have oxidation numbers of zero.

Chapter 7

Section 2 Oxidation Numbers

Assigning Oxidation Numbers, continued .

2. The more-electronegative element in a binary compound is assigned a negative number equal to the charge it would have as an anion. Likewise for the less-electronegative element. -
3. Fluorine has an oxidation number of -1 in all of its compounds because it is the most electronegative element.

Chapter 7

Section 2 Oxidation Numbers

Assigning Oxidation Numbers, continued .

4. Oxygen usually has an oxidation number of -2 .

Exceptions: v

- In peroxides, such as $\mathrm{H}_{2} \mathrm{O}_{2}$, oxygen's oxidation number is -1 .r
- In compounds with fluorine, such as OF_{2}, oxygen' s oxidation number is +2 . v

5. Hydrogen has an oxidation number of +1 in all compounds containing elements that are more electronegative than it; it has an oxidation number of -1 with metals.

Chapter 7

Section 2 Oxidation Numbers

Assigning Oxidation Numbers, continued v

6. The algebraic sum of the oxidation numbers of all atoms in an neutral compound is equal to zero. -
7. The algebraic sum of the oxidation numbers of all atoms in a polyatomic ion is equal to the charge of the ion.
8. Although rules 1 through 7 apply to covalently bonded atoms, oxidation numbers can also be applied to atoms in ionic compounds similarly.

Chapter 7

Rules for Assigning Oxidation Numbers

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Assigning Oxidation Numbers, continued

Sample Problem E v
Assign oxidation numbers to each atom in the following compounds or ions: \qquad
a. UF_{6}
b. $\mathrm{H}_{2} \mathrm{SO}_{4}$
c. ClO_{3}^{-}

Chapter 7

Assigning Oxidation Numbers, continued

Sample Problem E Solution
a. Place known oxidation numbers above the appropriate elements. -

$$
\mathrm{UF}_{6}^{-1}
$$

Multiply known oxidation numbers by the appropriate number of atoms and place the totals underneath the corresponding elements.

$$
\mathrm{UF}_{6}^{-1}
$$

Chapter 7

Section 2 Oxidation Numbers

Assigning Oxidation Numbers, continued

The compound UF_{6} is molecular. The sum of the oxidation numbers must equal zero; therefore, the total of positive oxidation numbers is +6 .

$$
\begin{gathered}
U_{6}^{-1} \\
+6-6
\end{gathered}
$$

Divide the total calculated oxidation number by the appropriate number of atoms. There is only one uranium atom in the molecule, so it must have an oxidation number of +6 . v

Chapter 7

Section 2 Oxidation Numbers

Assigning Oxidation Numbers, continued

Sample Problem E Solution, continued v
b. Hydrogen has an oxidation number of +1 .

Oxygen has an oxidation number of -2 . v
The sum of the oxidation numbers must equal zero, and there is only one sulfur atom in each molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Because $(+2)+(-8)=-6$, the oxidation number of each sulfur atom must be +6 . \downarrow

Chapter 7

Section 2 Oxidation Numbers

Assigning Oxidation Numbers, continued

Sample Problem E Solution, continued v
c. The total of the oxidation numbers should equal the overall charge of the anion, $1-$.

The oxidation number of a single oxygen atom in the ion is -2 . v
The total oxidation number due to the three oxygen atoms is -6 .
For the chlorate ion to have a 1- charge, chlorine must be assigned an oxidation number of +5 . \vee

$$
\begin{gathered}
+5-2 \\
\mathrm{ClO}_{3}^{-} \\
+5-6
\end{gathered}
$$

Chapter 7

Section 2 Oxidation Numbers

Using Oxidation Numbers for Formulas and Names ,

- As shown in the table in the next slide, many nonmetals can have more than one oxidation number. -
- These numbers can sometimes be used in the same manner as ionic charges to determine formulas. -
- example: What is the formula of a binary compound formed between sulfur and oxygen?

From the common +4 and +6 oxidation states of sulfur, you could predict that sulfur might form SO_{2} or SO_{3}.

Both are known compounds.

Chapter 7

Common Oxidation States of Nonmetals

Group 14	carbon	$-4,+2,+4$
Group 15	nitrogen	$-3,+1,+2,+3,+4,+5$
	phosphorus	$-3,+3,+5$
Group 16	sulfur	$-2,+4,+6$
Group 17	chlorine	$-1,+1,+3,+5,+7$
	bromine	$-1,+1,+3,+5,+7$
	iodine	$-1,+1,+3,+5,+7$

In addition to the values shown, atoms of each element in its pure state are assigned an oxidation number of zero.

Chapter 7

Section 2 Oxidation Numbers

Using Oxidation Numbers for Formulas and Names, continued v

- Using oxidation numbers, the Stock system, introduced in the previous section for naming ionic compounds, can be used as an alternative to the prefix system for naming binary molecular compounds. v

	Prefix system	Stock system
PCl_{3}	phosphorus trichloride	phosphorus(III) chloride
PCl_{5}	phosphorus pentachloride	phosphorus(V) chloride
$\mathrm{N}_{2} \mathrm{O}$	dinitrogen monoxide	nitrogen(I) oxide
NO	nitrogen monoxide	nitrogen(II) oxide
$\mathrm{Mo}_{2} \mathrm{O}_{3}$	dimolybdenum trioxide	molybdenum(III) oxide

Chapter 7

Section 3 Using Chemical Formulas

Preview

- Lesson Starter
- Objectives
- Formula Masses
- Molar Masses
- Molar Mass as a Conversion Factor
- Percentage Composition

Chapter 7

Section 3 Using Chemical Formulas

Lesson Starter .

- The chemical formula for water is $\mathrm{H}_{2} \mathrm{O}$.
- How many atoms of hydrogen and oxygen are there in one water molecule?
- How might you calculate the mass of a water molecule, given the atomic masses of hydrogen and oxygen?
- In this section, you will learn how to carry out these and other calculations for any compound.

Chapter 7

Section 3 Using Chemical Formulas

Objectives .

- Calculate the formula mass or molar mass of any given compound. v
- Use molar mass to convert between mass in grams and amount in moles of a chemical compound. .
- Calculate the number of molecules, formula units, or ions in a given molar amount of a chemical compound. \downarrow
- Calculate the percentage composition of a given chemical compound.

Chapter 7

Section 3 Using Chemical Formulas

- A chemical formula indicates: ,
- the elements present in a compound
- the relative number of atoms or ions of each element present in a compound \checkmark
- Chemical formulas also allow chemists to calculate a number of other characteristic values for a compound: v
- formula mass -
- molar mass •
- percentage composition

Chapter 7

Section 3 Using Chemical Formulas

Formula Masses v

- The formula mass of any molecule, formula unit, or ion is the sum of the average atomic masses of all atoms represented in its formula. ,
- example: formula mass of water, $\mathrm{H}_{2} \mathrm{O}$ average atomic mass of H: 1.01 amu v average atomic mass of O : 16.00 amu -
$2 H$ atoms $\times \frac{1.01 \mathrm{amu}}{H \text { atom }}=2.02 \mathrm{amu}$ 1.0 atom $\times \frac{16.00 \mathrm{amu}}{\rho_{\text {atom }}}=16.00 \mathrm{amu}$ average mass of $\mathrm{H}_{2} \mathrm{O}$ molecule: 18.02 amu

Chapter 7

Section 3 Using Chemical Formulas

Formula Masses ,

- The mass of a water molecule can be referred to as a molecular mass. .
- The mass of one formula unit of an ionic compound, such as NaCl , is not a molecular mass. .
- The mass of any unit represented by a chemical formula $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}\right)$ can be referred to as the formula mass.

Chapter 7

Section 3 Using Chemical Formulas

Formula Mass

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Section 3 Using Chemical Formulas

Formula Masses, continued

Sample Problem F

Find the formula mass of potassium chlorate, KClO_{3}.

Chapter 7

Section 3 Using Chemical Formulas

Formula Masses, continued

Sample Problem F Solution

The mass of a formula unit of KClO_{3} is found by adding the masses of one K atom, one Cl atom, and three O atoms.

Atomic masses can be found in the periodic table in the back of your book. v

In your calculations, round each atomic mass to two decimal places.

Chapter 7

Section 3 Using Chemical Formulas

Formula Masses, continued

Sample Problem F Solution, continued マ
$1 K_{\text {atom }} \times \frac{39.10 \mathrm{amu}}{K \text { atom }}=39.10 \mathrm{amu}$ v
1 Clatom $\times \frac{35.45 \mathrm{amu}}{\text { Clatom }}=35.45 \mathrm{amu}$ v
3.0 atoms $\times \frac{16.00 \mathrm{amu}}{\frac{\text { Q atom }}{}}=48.00 \mathrm{amu}$ -
formula mass of $\mathrm{KClO}_{3}=122.55 \mathrm{amu}$

Chapter 7

Section 3 Using Chemical Formulas

The Mole

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Section 3 Using Chemical Formulas

Molar Masses v

- The molar mass of a substance is equal to the mass in grams of one mole, or approximately 6.022×10^{23} particles, of the substance. -
- example: the molar mass of pure calcium, Ca , is $40.08 \mathrm{~g} / \mathrm{mol}$ because one mole of calcium atoms has a mass of 40.08 g . -
- The molar mass of a compound is calculated by adding the masses of the elements present in a mole of the molecules or formula units that make up the compound.

Chapter 7

Section 3 Using Chemical Formulas

Molar Masses, continued

- One mole of water molecules contains exactly two moles of H atoms and one mole of O atoms. The molar mass of water is calculated as follows. .

$$
\begin{aligned}
& 2 \text { mot } \times \frac{1.01 \mathrm{~g} \mathrm{H}}{\text { melt }}=2.02 \mathrm{~g} \mathrm{H} \\
& 1 \text { mot } \theta \times \frac{16.00 \mathrm{~g} \mathrm{O}}{\text { met } \theta}=16.00 \mathrm{~g} \mathrm{O}
\end{aligned}
$$

molar mass of $\mathrm{H}_{2} \mathrm{O}$ molecule: $18.02 \mathrm{~g} / \mathrm{mol} v$

- A compound's molar mass is numerically equal to its formula mass.

Chapter 7

Section 3 Using Chemical Formulas

Molar Mass

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Section 3 Using Chemical Formulas

Calculating Molar Masses for Ionic Compounds

Chapter 7

Section 3 Using Chemical Formulas

Molar Masses, continued

Sample Problem G v

What is the molar mass of barium nitrate, $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$?

Chapter 7

Section 3 Using Chemical Formulas

Molar Masses, continued

Sample Problem G Solution ,

One mole of barium nitrate, contains one mole of Ba , two moles of $\mathrm{N}(1 \times 2)$, and six moles of $\mathrm{O}(3 \times 2)$.

$$
\begin{aligned}
& 1 \text { mot Bax } \frac{137.33 \mathrm{~g} \mathrm{H}}{\text { molba }}=137.33 \mathrm{~g} \mathrm{Ba} \\
& 2 \text { mot } \times \frac{14.01 \mathrm{~g}}{\text { motN }}=28.02 \mathrm{~g} \mathrm{~N} \\
& 6 \text { mot O } \times \frac{16.00 \mathrm{~g} \mathrm{O}}{\text { mot }}=96.00 \mathrm{~g} \mathrm{O}
\end{aligned}
$$

molar mass of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=261.35 \mathrm{~g} / \mathrm{mol}$

Chapter 7

Section 3 Using Chemical Formulas

Molar Mass as a Conversion Factor

- The molar mass of a compound can be used as a conversion factor to relate an amount in moles to a mass in grams for a given substance.
- To convert moles to grams, multiply the amount in moles by the molar mass: -

> Amount in moles \times molar mass $(\mathrm{g} / \mathrm{mol})$
> $=$ mass in grams

Chapter 7

Section 3 Using Chemical Formulas

Mole-Mass Calculations

Chapter 7

Section 3 Using Chemical Formulas

Molar Mass as a Conversion Factor

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Section 3 Using Chemical Formulas

Molar Mass as a Conversion Factor, continued

Sample Problem H v
What is the mass in grams of 2.50 mol of oxygen gas?

Chapter 7

Section 3 Using Chemical Formulas

Molar Mass as a Conversion Factor, continued
Sample Problem H Solution
Given: $2.50 \mathrm{~mol} \mathrm{O}_{2}$,
Unknown: mass of O_{2} in grams -

Solution: -

moles $\mathrm{O}_{2} \longrightarrow$ grams O_{2} -
amount of $\mathrm{O}_{2}(\mathrm{~mol}) \times$ molar mass of $\mathrm{O}_{2}(\mathrm{~g} / \mathrm{mol})=$ mass of $\mathrm{O}_{2}(\mathrm{~g})$

Chapter 7

Section 3 Using Chemical Formulas

Molar Mass as a Conversion Factor, continued
Sample Problem H Solution, continued マ
Calculate the molar mass of O_{2}.

$$
2 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{\mathrm{~mol} \mathrm{O}}=32.00 \mathrm{~g}
$$

Use the molar mass of O_{2} to convert moles to mass. .

$$
2.50 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~mol} \mathrm{O}_{2}}=80.0 \mathrm{~g} \mathrm{O}_{2}
$$

Chapter 7

Section 3 Using Chemical Formulas

Converting Between Amount in Moles and Number of Particles

1. Decide which quantity you are given: amount (in moles) or number of particles (in atoms, molecules, formula units, or ions).
2. If you are converting from amount to number of particles (going left to right), use the top conversion factor.
3. If you are converting from number of particles to amount (going right to left), use the bottom conversion factor.

Chapter 7

Section 3 Using Chemical Formulas

Molar Mass as a Conversion Factor, continued

Sample Problem I v

Ibuprofen, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$, is the active ingredient in many nonprescription pain relievers. Its molar mass is $206.31 \mathrm{~g} / \mathrm{mol}$.
a. If the tablets in a bottle contain a total of 33 g of ibuprofen, how many moles of ibuprofen are in the bottle? ,
b. How many molecules of ibuprofen are in the bottle?
c. What is the total mass in grams of carbon in 33 g of ibuprofen?

Chapter 7

Section 3 Using Chemical Formulas

Molar Mass as a Conversion Factor, continued

Sample Problem I Solution v

Given: 33 g of $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$,
molar mass $206.31 \mathrm{~g} / \mathrm{mol} \nabla$
Unknown: a. moles $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$,
b. molecules $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$,
c. total mass of C

Solution:
a. grams \longrightarrow moles \vee

$$
\mathrm{g} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}}{206.31 \mathrm{~g} \mathrm{C}_{43} \mathrm{H}_{18} \mathrm{O}_{2}}=\mathrm{mol} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}
$$

Chapter 7

Section 3 Using Chemical Formulas

Molar Mass as a Conversion Factor, continued

Sample Problem I Solution, continued v
b. moles \longrightarrow molecules
mol C $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \times \frac{6.022 \times 10^{23} \text { molecules }}{\mathrm{mol}}=$ molecules $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
c. moles $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \longrightarrow$ moles $\mathrm{C} \longrightarrow$ grams C v

$$
\mathrm{mol} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \times \frac{13 \mathrm{~mol} \mathrm{C}^{\mathrm{mol} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{\mathrm{~mol} \mathrm{C}}=\mathrm{g} \mathrm{C}}{}
$$

Chapter 7

Section 3 Using Chemical Formulas

Molar Mass as a Conversion Factor, continued
Sample Problem I Solution, continued
a. $33 \mathrm{~g} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}}{206.31 \mathrm{~g} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}}=0.16 \mathrm{~mol} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
b. $0.16 \mathrm{~mol} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \times \frac{6.022 \times 10^{23} \text { molecules }}{\mathrm{mol}}=$

$$
9.6 \times 10^{22} \text { molecules } \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}
$$

c. $0.16 \mathrm{~mol} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \times \frac{13 \mathrm{~mol} \mathrm{C}_{2018}^{\mathrm{mol} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{\mathrm{mol} \mathrm{C}}=25 \mathrm{~g} \mathrm{C}}{}$

Chapter 7

Section 3 Using Chemical Formulas

Percentage Composition ,

- It is often useful to know the percentage by mass of a particular element in a chemical compound.
- To find the mass percentage of an element in a compound, the following equation can be used. v

mass of element in sample of compound mass of sample of compound

\% element in compound

- The mass percentage of an element in a compound is the same regardless of the sample's size.

Chapter 7

Section 3 Using Chemical Formulas

Percentage Composition, continued v

- The percentage of an element in a compound can be calculated by determining how many grams of the element are present in one mole of the compound. -

$$
\frac{\text { mass of element in } 1 \mathrm{~mol} \text { of compound }}{\text { molar mass of compound }}
$$

\% element in compound \downarrow

- The percentage by mass of each element in a compound is known as the percentage composition of the compound.

Chapter 7

Section 3 Using Chemical Formulas

Percentage Composition of Iron Oxides

Chapter 7

Section 3 Using Chemical Formulas

Percentage Composition

Click below to watch the Visual Concept.

Visual Concept

Chapter 7

Percentage Composition Calculations

Chapter 7

Section 3 Using Chemical Formulas

Percentage Composition, continued

Sample Problem J v
Find the percentage composition of copper(I) sulfide, $\mathrm{Cu}_{2} \mathrm{~S}$.

Chapter 7

Section 3 Using Chemical Formulas

Percentage Composition, continued

Sample Problem J Solution v
Given: formula, $\mathrm{Cu}_{2} \mathrm{~S}$ -
Unknown: percentage composition of $\mathrm{Cu}_{2} \mathrm{~S}$ v

Solution: v

formula \longrightarrow molar mass \longrightarrow mass percentage of each element

Chapter 7

Section 3 Using Chemical Formulas

Percentage Composition, continued

Sample Problem J Solution, continued ,

$$
2 \mathrm{~mol} \mathrm{Cu} \times \frac{63.55 \mathrm{~g} \mathrm{Cu}}{\mathrm{~mol} \mathrm{Cu}}=127.1 \mathrm{~g} \mathrm{Cu} \text {. }
$$

$1 \mathrm{~mol} \mathrm{~S} \times \frac{32.07 \mathrm{~g} \mathrm{~S}}{\mathrm{~mol} \mathrm{~S}}=32.07 \mathrm{~g} \mathrm{~S}$.

Molar mass of $\mathrm{Cu}_{2} \mathrm{~S}=159.2 \mathrm{~g}$

Chapter 7

Section 3 Using Chemical Formulas

Percentage Composition, continued

Sample Problem J Solution, continued v

$$
\begin{aligned}
& \frac{127.1 \mathrm{~g} \mathrm{Cu}^{159.2 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{~S}} \times 100=79.85 \% \mathrm{Cu}}{\frac{32.07 \mathrm{~g} \mathrm{~S}^{2}}{159.2 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{~S}} \times 100=20.15 \% \mathrm{~S}}
\end{aligned}
$$

Chapter 7

Preview

- Lesson Starter
- Objectives
- Calculation of Empirical Formulas
- Calculation of Molecular Formulas

Chapter 7
 Section 4 Determining Chemical Formulas

Lesson Starter ,

- Compare and contrast models of the molecules NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$.
- The numbers of atoms in the molecules differ, but the ratio of N atoms to O atoms for each molecule is the same.

Chapter 7

Section 4 Determining Chemical Formulas

Objectives .

- Define empirical formula, and explain how the term applies to ionic and molecular compounds. -
- Determine an empirical formula from either a percentage or a mass composition.
- Explain the relationship between the empirical formula and the molecular formula of a given compound. -
- Determine a molecular formula from an empirical formula.

Empirical and Actual Formulas

Empirical formula $\mathrm{NH}_{2} \mathrm{O}$

Space-filling model

Chapter 7

Section 4 Determining Chemical Formulas

- An empirical formula consists of the symbols for the elements combined in a compound, with subscripts showing the smallest whole-number mole ratio of the different atoms in the compound.
- For an ionic compound, the formula unit is usually the compound's empirical formula. v
- For a molecular compound, however, the empirical formula does not necessarily indicate the actual numbers of atoms present in each molecule. v
- example: the empirical formula of the gas diborane is BH_{3}, but the molecular formula is $\mathrm{B}_{2} \mathrm{H}_{6}$.

Chapter 7

Calculation of Empirical Formulas ,

- To determine a compound's empirical formula from its percentage composition, begin by converting percentage composition to a mass composition. \checkmark
- Assume that you have a 100.0 g sample of the compound. .
- Then calculate the amount of each element in the sample. .
- example: diborane
- The percentage composition is 78.1% B and $21.9 \% \mathrm{H}$. v
- Therefore, 100.0 g of diborane contains 78.1 g of B and 21.9 g of H .

Calculation of Empirical Formulas, continued

- Next, the mass composition of each element is converted to a composition in moles by dividing by the appropriate molar mass. -

$$
\begin{aligned}
& 78.1 \mathrm{~g} \mathrm{~B} \times \frac{1 \mathrm{~mol} \mathrm{~B}}{10.81 \mathrm{~g} \mathrm{~B}}=7.22 \mathrm{~mol} \mathrm{~B} \\
& 21.9 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.01 \mathrm{~g} \mathrm{H}}=21.7 \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

- These values give a mole ratio of 7.22 mol B to 21.7 mol H .

Chapter 7

Section 4 Determining Chemical Formulas

Calculation of Empirical Formulas, continued

- To find the smallest whole number ratio, divide each number of moles by the smallest number in the existing ratio. -

$$
\frac{7.22 \mathrm{~mol} \mathrm{~B}}{7.22}: \frac{21.7 \mathrm{~mol} \mathrm{H}}{7.22}=1 \mathrm{~mol} \mathrm{~B}: 3.01 \mathrm{~mol} \mathrm{H} \text {. }
$$

- Because of rounding or experimental error, a compound's mole ratio sometimes consists of numbers close to whole numbers instead of exact whole numbers. -
- In this case, the differences from whole numbers may be ignored and the nearest whole number taken.

Chapter 7

Calculation of Empirical Formulas, continued

Sample Problem L v

Quantitative analysis shows that a compound contains 32.38% sodium, 22.65% sulfur, and 44.99% oxygen. Find the empirical formula of this compound.

Chapter 7
 Section 4 Determining Chemical Formulas

Calculation of Empirical Formulas, continued

Sample Problem L Solution
Given: percentage composition: $32.38 \% \mathrm{Na}, 22.65 \% \mathrm{~S}$, and 44.99\% O -

Unknown: empirical formula v
Solution: -
percentage composition \longrightarrow mass composition \longrightarrow composition in moles \longrightarrow smallest whole-number mole ratio of atoms

Chapter 7

Calculation of Empirical Formulas, continued

Sample Problem L Solution, continued v
$32.38 \mathrm{~g} \mathrm{Nax} \frac{1 \mathrm{~mol} \mathrm{Na}}{22.99 \mathrm{~g} \mathrm{Na}}=1.408 \mathrm{~mol} \mathrm{Na}$ -
$22.65 \mathrm{~g} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.07 \mathrm{~g} \mathrm{~S}}=0.7063 \mathrm{~mol} \mathrm{~S}$.
$44.99 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.812 \mathrm{~mol} \mathrm{O}$

Chapter 7

Section 4 Determining Chemical Formulas

Calculation of Empirical Formulas, continued

Sample Problem L Solution, continued v
Smallest whole-number mole ratio of atoms: The compound contains atoms in the ratio $1.408 \mathrm{~mol} \mathrm{Na}: 0.7063 \mathrm{~mol} \mathrm{~S}$: 2.812 mol O .
$\frac{1.408 \mathrm{~mol} \mathrm{Na}}{0.7063}: \frac{0.7063 \mathrm{~mol} \mathrm{~S}}{0.7063}: \frac{2.812 \mathrm{~mol} \mathrm{O}}{0.7063}=$
$1.993 \mathrm{~mol} \mathrm{Na}: 1 \mathrm{~mol} \mathrm{~S}: 3.981 \mathrm{~mol}$ O
Rounding yields a mole ratio of $2 \mathrm{~mol} \mathrm{Na:1} \mathrm{~mol} \mathrm{S:4} \mathrm{~mol} \mathrm{O.r}$ The empirical formula of the compound is $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

Chapter 7

Section 4 Determining Chemical Formulas

Calculation of Molecular Formulas v

- The empirical formula contains the smallest possible whole numbers that describe the atomic ratio. v
- The molecular formula is the actual formula of a molecular compound. .
- An empirical formula may or may not be a correct molecular formula. v
- The relationship between a compound's empirical formula and its molecular formula can be written as follows. -

$$
x(\text { empirical formula })=\text { molecular formula }
$$

Chapter 7

Section 4 Determining Chemical Formulas

Calculation of Molecular Formulas, continued

- The formula masses have a similar relationship. . x (empirical formula mass) $=$ molecular formula mass v
- To determine the molecular formula of a compound, you must know the compound's formula mass.
- Dividing the experimental formula mass by the empirical formula mass gives the value of x.
- A compound's molecular formula mass is numerically equal to its molar mass, so a compound's molecular formula can also be found given the compound's empirical formula and its molar mass.

Comparing Empirical and Molecular Formulas

Compound	Empirical formula	Molecular formula	$\begin{aligned} & \text { Molar } \\ & \text { mass (g) } \end{aligned}$	Space-filling model
Formaldehyde	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{O}$ - same as empirical formula - $n=1$	30.03	
Acetic acid	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ - $2 \times$ empirical formula $\text { - } n=2$	60.06	
Glucose	$\mathrm{CH}_{2} \mathrm{O}$	$\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ - $6 \times$ empirical formula - $n=6$	180.18	

Section 4 Determining Chemical Formulas

Comparing Molecular and Empirical Formulas

Click below to watch the Visual Concept.

Visual Concept

Chapter 7
 Section 4 Determining Chemical Formulas

Calculation of Molecular Formulas, continued

Sample Problem N -
In Sample Problem M, the empirical formula of a compound of phosphorus and oxygen was found to be $\mathrm{P}_{2} \mathrm{O}_{5}$. Experimentation shows that the molar mass of this compound is $283.89 \mathrm{~g} / \mathrm{mol}$. What is the compound's molecular formula?

Chapter 7
 Section 4 Determining Chemical Formulas

Calculation of Molecular Formulas, continued

Sample Problem N Solution ,
Given: empirical formula
Unknown: molecular formula

Solution:

$$
\begin{gathered}
x(\text { empirical formula })=\text { molecular formula } \\
x=\frac{\text { molecular formula mass }}{\text { empirical formula mass }}
\end{gathered}
$$

Chapter 7

Calculation of Molecular Formulas, continued

Sample Problem N Solution, continued v
Molecular formula mass is numerically equal to molar mass. molecular molar mass $=283.89 \mathrm{~g} / \mathrm{mol} \nabla$ molecular formula mass $=283.89 \mathrm{amu}$
empirical formula mass
mass of phosphorus atom $=30.97 \mathrm{amu}$
mass of oxygen atom = 16.00 amu
empirical formula mass of $\mathrm{P}_{2} \mathrm{O}_{5}=\quad$ V
$2 \times 30.97 \mathrm{amu}+5 \times 16.00 \mathrm{amu}=141.94 \mathrm{amu}$

Chapter 7

Section 4 Determining Chemical Formulas

Calculation of Molecular Formulas, continued

Sample Problem N Solution, continued \rightharpoonup
Dividing the experimental formula mass by the empirical formula mass gives the value of x.

$$
x=\frac{283.89 \mathrm{amu}}{141.94 \mathrm{amu}}=2.0001
$$

$$
2 \times\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)=\mathrm{P}_{4} \mathrm{O}_{10}
$$

The compound' s molecular formula is therefore $\mathrm{P}_{4} \mathrm{O}_{10}$.

End of Chapter 7 Show

