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Section 1 Objectives 

 Core Principles 

•  Distance and displacement  

•  Speed and velocity  

•  Acceleration 

•  Graphs describing motion  

•  Equations of  motion for uniform 
acceleration  

•  Projectile motion  

•  Fluid resistance and terminal speed  

Applications and skills:  
•  Determining instantaneous and average values for velocity, 

speed and acceleration  
•  Solving problems using equations of  motion for uniform 

acceleration  
•  Sketching and interpreting motion graphs  
•  Determining the acceleration of  free-fall experimentally  
•  Analysing projectile motion, including the resolution of  

vertical and horizontal components of  acceleration, velocity 
and displacement  

•  Qualitatively describing the effect of  fluid resistance on 
falling objects or projectiles, including reaching terminal 
speed  

 



ToK and Aims 

Theory of  knowledge:  

The independence of  horizontal and vertical motion in projectile motion seems to be counter-intuitive. How do 
scientists work around their intuitions? How do scientists make use of  their intuitions?  

Aims:  

•  Aim 2: much of  the development of  classical physics has been built on the advances in kinematics  

•  Aim 6: experiments, including use of  data logging, could include (but are not limited to): determination of  g, 
estimating speed using travel timetables, analysing projectile motion, and investigating motion through a fluid  

•  Aim 7: technology has allowed for more accurate and precise measurements of  motion, including video 
analysis of  real-life projectiles and modelling/simulations of  terminal velocity  



Historical Perspective of  Mechanics 

Galileo 
•  One of  the first to treat vertical and 

horizontal motion as distinctly separate 
(thinking in vectors). 

•  Demonstrated many of  the foundational 
principles of  motion such as inertia, 
uniform rates of  falling objects, and the 
attraction of  the Earth and objects on it as 
similar to the attraction of  the Sun to the 
Earth. 

Isaac Newton 
•  Expanded on the principles Galileo identified and 

developed differential calculus to describe the 
motions of  objects in terms of  derivatives and 
changing functions in time. 

•  Identified the relation of  force to motion and the 
property of  matter as the property which opposes 
changes in motion. 

•  Developed the 3 laws of  motion which were 
heavily based on Galileos hypothesis but included 
forces. 



Kinematics 

Study of  Motion 
Essential idea: Motion may be described and 

analyzed by the use of  graphs and equations. 

Nature of  science: Observations: The ideas of  
motion are fundamental to many areas of  
physics, providing a link to the consideration 
of  forces and their implication. The 
kinematic equations for uniform acceleration 
were developed through careful observations 
of  the natural world. 

Utilization:  
 Diving, parachuting and similar activities where fluid 
resistance affects motion  
• The accurate use of  ballistics requires careful analysis  
• Biomechanics (see Sports, exercise and health science SL 
sub-topic 4.3)  
• Quadratic functions (see Mathematics HL sub-topic 2.6; 
Mathematics SL sub-topic 2.4; Mathematical studies SL sub-
topic 6.3) 
• The kinematic equations are treated in calculus form in 
Mathematics HL sub-topic 6.6 and Mathematics SL sub-
topic 6.6  



Position (denoted X or Y) 
Kinematics is the study of  displacement, velocity and acceleration, or in short, a study of  motion. 

•A study of  motion begins with position and change in position. 

Defining position 

(1)  Distance:  how far an object has traveled, without regard to point of  origin or direction of  travel (scalar 
quantity) 

(2)  Displacement:  how far an object has traveled with respect to a point of  origin, direction matters (vector 
quantity) 

Remember our discussions of  vectors, positive and negative are useful ways to describe changes position in 1 
dimension but falls into trouble when the vectors are multidimensional. 

Ex: What is the  

Distance? 

Displacement? 

 

 Origin           3m             10m 



Distance vs Displacement 

Let us assume that a ball rests 
on a track.  If  every colored 
segment represents 1m answer 
the following: 

If  the ball starts at  

Position 1 and then moves to 
position 2, what is the distance 
traveled?  The displacement? 

Now if  it travels from position 
2 to position 3 what is the total 
distance traveled? The total 
displacement? 

•Now for some detailed analysis of these two motions… 
 
 
 
•Displacement ∆x (or s) has the following formulas: 
 
 
 

displacement ∆x = x2 – x1 
s = x2 – x1 

where x2 is the final position 
and x1 is the initial position 

x(m) 1 

x(m) 

2 

2 3 



Changes in Position in Time 

•  Using the previous example, say that the ball traveled the first leg (from 1 to 2) in 3 seconds.  Now assume that it 
traveled from 2 to 3 in 5 seconds. 

•  Graph this motion with the position on the y axis and the time on the x axis (let time start when the ball starts rolling 
so initially t=0). 

•  Note that the slope of  the line for the position/time graph is gained by using m = ​​𝑥↓𝑓 − ​𝑥↓𝑖 /​𝑡↓𝑓 − ​𝑡↓𝑖    this 

 equation can be written in terms of  changes in x and t using delta notation, then v = ​Δ𝑥/Δ𝑡  is the rate at which the ball 
moves.   

•  The physical quantity for the rate an object moves through a displacement is Velocity. 

•  Then we have calculated the average velocity of  the ball through each segment of  its motion.  How does this value 
change if  we take the average over the entire duration?   



Velocity and Speed 

 
•  Here we have a Displacement/time graph. Find the average 

velocity from t=0 to t=10s.  Do the same for t=15 to 30s. 
•  What is the sign of  the two slopes telling us? 

•  Find the average velocity from t=0 to t=30s.  Now find the 
average speed from t=0 to t=30s. 

•  Why are they different? 
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Changes in Velocity in time 

•  A car is traveling 20ms-1 down the road.  If  it does so for 15 seconds how far has it traveled? 

•  Now, draw the velocity/time plot for a car which is initially traveling 20ms-1 for 5 seconds, slows down steadily to a very brief  stop 
after 3 seconds, then smoothly reverses to -5ms-1 over the next 8 seconds and then maintains that velocity for the next 4 seconds.   

•  Find the slope of  the velocity curve for each distinct line segment using the same slope formula as for the position time  

graph m = ​​𝑣↓𝑓 − ​𝑣↓𝑖 /​𝑡↓𝑓 − ​𝑡↓𝑖   .   
•  You can re-write this in delta notation just as previously, a = ​Δ𝑣/Δ𝑡  then we have calculated the average acceleration for the car 

during these times.  What is the derived unit for acceleration? 

•  Lastly, find the area under the entire curve (t=0 to t=20s) 

•  (Hint:  Don’t forget to write units when you perform the calculations) 

•  What have you found when you computed this area? 



Average and Instantaneous Velocity 

•  We can label each position with an x and the time interval between each x 
with a ∆t. 

•  Then vA = (x2 - x1)/∆t,      vB = (x3 - x2)/∆t, and finally        vC = (x4 - x3)/∆t. 

•  Focus on the interval from x2
 to x3. 

•  Note that the speed changed from x2 to x3, and so vB is NOT really the speed 
for that whole interval. 

•  We say the vB is an average speed (as are vA and vC). 

x1 x2 x3 x4 

∆t ∆t ∆t 
vA vB vC 



An Experiment in Acceleration 
•  In the early 1950s military aeronautical engineers 

were researching the effects of  acceleration on 
the human body and were concluding (without 
much evidence) that the human body couldn’t 
survive the stress of  a rapid ejection system and 
so put little emphasis on pilot safety belts and 
ejection seats (assuming that the conditions of  
the ejection would be roughly as lethal as the 
crash). 

•  Colonel Stapp, and air force physician decided 
that the assumptions were not not valid and 
proposed to determine the effects of  high 
accelerations on the body.   

•  A rocket sled was designed to accelerate up to 
40gs (40 times the felt force of  gravity) 

•  Stapp had himself  launched down the track and 
a video of  the procedure taken. 



Acceleration Practice 

•  In 1954, America's original Rocketman, Col. John Paul Stapp, attained a then-world record 
land speed of  632 mph, going from a standstill to a speed faster than a .45 bullet in 5.0 
seconds on an especially-designed rocket sled, and then screeched to a dead stop in 1.4 
seconds, sustaining more than 40g's of  force, all in the interest of  safety.  

•  There are TWO accelerations in this problem calculate the acceleration both when  

(a)  He speeds up from 0 to 632 mph in 5.0 s. 

(b)  He slows down from 632 mph to 0 in 1.4 s. 

Calculate the two accelerations, in ms-2.  Put these in gs (1g=10ms2).     Which one is larger?   



Equations of  Motion 

We have then established the 3 
foundational relationships on which 
motion is based:  

Position is defined as a displacement 
from an initial position.   

Velocity is defined as the rate of  
change of  displacement in time.  
Acceleration is defined as the rate of  
change of  velocity in time. 

From these we can produce our kinematic 
equations after a little derivation and under a 
very specific condition: acceleration must be 
constant 
 
Firstly remember our first principles 
 
v = ​​𝒙↓𝒇 − ​𝒙↓𝒊 /​𝒕↓𝒇 − ​𝒕↓𝒊      v = ​Δ𝑥/Δ𝑡     and   a 
= ​​𝒗↓𝒇 − ​𝒗↓𝒊 /​𝒕↓𝒇 − ​𝒕↓𝒊     a = ​Δ𝑣/Δ𝑡    



Kinematic Equation for Velocity 

•  Given that we know a  = ​​𝑣↓𝑓 − ​𝑣↓𝑖 /​𝑡↓𝑓 − ​𝑡↓𝑖   , and, if  we let the initial 
time be 0 we can simply call ​𝑡↓𝑓 − ​𝑡↓𝑖  t, the time of  interest, then a =  ​​𝑣↓𝑓 
− ​𝑣↓𝑖 /𝑡 . 

•  Then we can multiply by t and get at = ​𝑣↓𝑓 − ​𝑣↓𝑖 . At this point if  we want 
an equation for the final velocity, given the initial velocity, a constant 
acceleration, and time, we have 

vf = vi + at   

our velocity equation in terms of  time and acceleration.   



Kinematic Equations for Position 

•  Firstly we know by the first principles that xf = xi + vt.  This is the starting point for our displacement equation if  we have 
no acceleration. 

•  Now, if  we know that our displacement x = xf  – xi and that, for a constant acceleration, the velocity can be calculated by 
taking an average of  the first and last velocity for that period, then  the average velocity is ​𝒗 = ​​𝒗↓𝒇 + ​𝒗↓𝒊 /𝟐  

•  Then substitute to get the equation for average position: xf = xi + [​​𝒗↓𝒇 + ​𝒗↓𝒊 /𝟐 ]t 
•  Now if  we substitute our velocity equation earlier vf = vi + at into this equation we obtain 

•  xf = xi + [​​𝑣↓𝑖 + at + ​𝑣↓𝑖 /2 ]t 
•   We can then simplify this equation to produce 

•  xf = xi + ​𝒗↓𝒊  t + ​𝒂​𝒕↑𝟐 /𝟐  
•  This is our general Displacement/Position equation for a uniform acceleration.   



Time Independent Velocity Equation  

•  Now that we have our equations for position and velocity let us perform an algebraic manipulation to get a shortcut 
equation for velocity if  we don’t have time: 

•  Start with xf = xi + ​𝑣 t and vf = vi + at;       Now solve the velocity equation for time:  t = ​​𝑣↓𝑓 − ​𝑣↓𝑖 /𝑎  
•  Now substitute this value of  t into our position equation xf = xi + ​𝒗 t  
•  Then xf = xi +[ ​​𝑣↓𝑓 + ​𝑣↓𝑖 /2 ] [​​𝑣↓𝑓 − ​𝑣↓𝑖 /𝑎 ]  
•  From this we can use algebra to manipulate the equation into the following form 

     (xf  – xi)·2a = (​𝑣↓𝑓 + ​𝑣↓𝑖 )(​𝑣↓𝑓 − ​𝑣↓𝑖 ) 
•  If  we foil this right side we find that we have a difference of  perfect squares and the cross terms cancel to produce  

  (xf  – xi)·2a = ​𝑣↓𝑓 2 - ​𝑣↓𝑖 2  
•  We can then solve this equation for the final velocity to obtain our equation for velocity without needing time. 

  vf
2 = vi

2 + 2a(xf  – xi) 



4 Kinematic Equations 

•  Then we have produced our 4 major kinematic equations 

Average Displacement: xf = xi + ​𝒗 t   ; ​𝒗 = ​​𝒗↓𝒊 + ​𝒗↓𝒇 /𝟐  
Displacement:  xf = xi + ​𝒗↓𝒊  t + ​𝒂​𝒕↑𝟐 /𝟐  
Velocity (with time): vf = vi + at   

Velocity (timeless): vf
2 = vi

2 + 2a(xf  – xi) 

 



Falling Objects 

•  As has been discussed before and in previous examples, our kinematic equations require constant acceleration.   

•  The most common case for this is for falling objects.  A falling object (or object thrown directly up) has only the force of  
gravity causing it to accelerate.   

•  The acceleration due to gravity at the Earth’s surface is so common we call it g and g= 9.8ms-2 towards the ground. 

•  Then our kinematic equations for falling objects take on the form 

yf = yi + ​𝒗 t   ; ​𝒗 = ​​𝒗↓𝒊 + ​𝒗↓𝒇 /𝟐 ;  
yf = yi + ​𝒗↓𝒊 t - ​𝒈​𝒕↑𝟐 /𝟐  
vf = vi - gt 

vf
2 = vi

2 – 2g(yf  – yi) 
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Velocity Time Plot of  Falling Object 

Plotting the Trajectory of  a Falling Object 

•  Consider the displacement 
of  a dropped object, shown 
by the figures and graph 

•  Using the information 
provided find the equation 
which generates this graph. 

•  What initial information is 
needed or assumed? 

•  Using what you know about 
the relationships between 
acceleration, velocity, and 
position, what should the 
graph of  velocity look like? 
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Plotting the Trajectory of  an Object Thrown 
Straight Up 

•  Previously we worked with the case that 
the initial velocity of  the object was 0.   

•  If  we now give the object some initial 
velocity in the positive direction, describe 
the arrow diagram for motion.  Estimate 
the trajectory. 

•  Now let’s use a specific example 

•  For a ball launched straight up from the 
ground at 15ms-1 list our knowns: 

•  yi = ? 

•  vi = ? 

•  a = ? 

•  Let us generate the table of  values we need 
to plot the trajectory, if  we record the 
position every 0.2seconds. 

•  What function will give us this data easily? 

Time (s)	 Position (m)	
0	 0.0	

0.2	 2.8	
0.4	 5.2	
0.6	 7.2	
0.8	 8.9	

1	 10.1	
1.2	 10.9	
1.4	 11.4	
1.6	 11.5	
1.8	 11.1	

2	 10.4	
2.2	 9.3	
2.4	 7.8	
2.6	 5.9	
2.8	 3.6	

3	 0.9	

0.0 

2.0 

4.0 

6.0 

8.0 

10.0 

12.0 

14.0 

0 0.5 1 1.5 2 2.5 3 3.5 

Po
si

tio
n 

in
 Y

 (m
) 

Time (s) 

Trajectory  



Terminal Velocity and Air Resistance 

•  Generally we try to ignore air resistance, because air resistance is an external force 
which causes acceleration to change and invalidates our kinematic equations. 

•  As an object falls and gains velocity the friction between the object and the air 
increases (air is a fluid and resists motion through it). 

•  This is known as Drag or Air resistance and is α v2 then as the object falls it 
experiences greater resistance to its motion and slows.   

•  When Fdrag = Fgravity the forces balance and the object no longer accelerates, thus its 
velocity has become constant. 

•  This velocity is known as the Terminal Velocity of  the object. 



Relative Velocity and Vectors 

•  Up until now we have restricted our discussion of  kinematics to a single object moving in 1-D. 

•  However, objects are frequently moving in at least two spatial dimensions (including time in each) and 
there are often more than one object involved in the situation.  

•  Ex: cars in traffic.  If  you have two cars moving at different velocities then they are both moving with 
a certain velocity compared to a person at rest, that is what we mean when we say that our choice of  
reference points or inertial frames is important.  If  car 1 has velocity 50mph down the street and car 2 
has velocity 35mph in the same direction, then how fast is car 1 going compared to car 2?   

•  This process is known as finding relative velocity and for 2 vectors A and B 

  VAB = VA - VB 

•  Try the same situation only car 1 is moving 50mph; 0° while car 2 has velocity 35mph; 270°.  Use 
vector subtraction to find the relative velocity.   (Draw the vector diagram!)   



Practice  



Kinematics in 2-D (Projectile Motion) 

•  One of  the most simple cases of  objects moving in 2-D is the case of  a 
projectile.  

•  Projectile motion: the motion of  an object which has been given an initial 
velocity and is subsequently under no other influence than gravity. 

•  A projectile then has motion in X and Y axis. It is important to remember 
how to use our vector knowledge to separate the motion of  a projectile into 
its independent X and Y motions.  



Compare the Ball Dropped and Rolled off  a Table 
•  To make the situation clear let us compare these two scenarios.  Remember the 1-D motion of  a dropped ball earlier: 

t1 =0 

t2 =.5 

t3 =1 

t4 =1.5 

t5 =2 

t6 =2.5 

x=0, y=0; vx=0 vy=0; ax=0, ay=-g 

 x=0, y=​−g​​𝑡↓2 ↑2 /2 ; vx=0 vy=-gt2 ; 
ax=0, ay=-g 
x=0, y=​−g​​𝑡↓3 ↑2 /2 ; vx=0 vy=-gt3 ; 
ax=0, ay=-g 

x=0, y=​−g​​𝑡↓4 ↑2 /2 ; vx=0 vy=-gt4 ; 
ax=0, ay=-g 

x=0, y=​−g​​𝑡↓5 ↑2 /2 ; vx=0 vy=-gt5 ; 
ax=0, ay=-g 

x=0, y=​−g​​𝑡↓6 ↑2 /2 ; vx=0 vy=-gt6 ; 
ax=0, ay=-g 

t1 =0 

t2 =.5 

t3 =1 

t4 =1.5 

t5 =2 

t6 =2.5 

x=0, y=0; vx=0 vy=0; ax=0, ay=-g 

 x=vxt2 , y=​−g​​𝑡↓2 ↑2 /2 ; vx=0 vy=-gt2 ; 
ax=0, ay=-g 

Ball Dropped Ball Rolled off  Table 

 x=vxt3 , y=​−g​​𝑡↓3 ↑2 /2 ; vx=0 vy=-gt3 ; 
ax=0, ay=-g 

 x=vxt4 , y=​−g​​𝑡↓4 ↑2 /2 ; vx=0 vy=-gt4 ; 
ax=0, ay=-g 

 x=vxt5 , y=​−g​​𝑡↓5 ↑2 /2 ; vx=0 vy=-gt5 ; 
ax=0, ay=-g 

 x=vxt6 , y=​−g​​𝑡↓6 ↑2 /2 ; vx=0 vy=-gt6 ; 
ax=0, ay=-g 



Separation of  Components and Vector Form 
of  Motion Equations 

•  Then the usefulness of  vectors is made apparent.  In order to do 2-D kinematics we only 
have to do 1-D kinematics twice.  All of  our methods we previously used still work, we just 
have to apply them to the x and y vector components. Then we can write our equations for 
displacement, velocity and acceleration as 2-D vectors with their components being the 
displacement and velocity equations we previously derived: 

•  Displacement: ​𝒅 =⟨​𝒙 , ​𝒚 ⟩; ​𝒅 =⟨xi + ​𝒗↓𝒊𝒙  t, yi + ​𝒗↓𝒊𝒚 t − ​𝒈​𝒕↑𝟐 /𝟐 ⟩ 
•  Velocity:  ​𝒗 =⟨​​𝒗↓𝒙  , ​​𝒗↓𝒚  ⟩; ​𝒗 =⟨​𝒗↓𝒊𝒙 , ​𝒗↓𝒊𝒚  − 𝒈𝒕⟩ 
•  Acceleration:  ​𝒂 =⟨​​𝒂↓𝒙  , ​​𝒂↓𝒚  ⟩= ⟨𝟎,−𝒈⟩ 
 



Kinematic Equations for Projectiles 

•  This allows us to resolve our 
kinematic equations into their 
components. 

•  This table is from Giancoli and 
you should become 
comfortable working with 
these equations and 
understanding when to apply 
them. 

•  Bring your computers 
tomorrow!! 



Describing Projectile Motion Graphically 

•  As we previously showed, projectile motion shares many similarities to motion of  objects falling or thrown straight up, with the exception that they also 
include a horizontal component.  Graphically then you can plot the motion of  a projectile using an X(t) and Y(t) plot.   

•  For a projectile with an initial velocity vector ​​𝑣↓𝑖   = 20ms-1; 30° let us determine what our displacement and velocity equations should look like in x and y 
respectively, generate their t tables using those equations, and then graph them in time.  It is useful here to resolve the initial velocity into its components. 

X Equations              
xf =  xi + ​𝒗↓𝒊𝒙  
t 
​​𝒗↓𝒙 =𝒗↓𝒊𝒙  
Ax= 0 
 
Y Equations               
yf =yi + ​𝒗↓𝒊𝒚 t − ​𝒈​
𝒕↑𝟐 /𝟐  
​​𝒗↓𝒚 =𝒗↓𝒊𝒚  - gt 
Ay= -g 
​𝒗↓𝒇𝒚 2 = ​𝒗↓𝒊𝒚 2 -2g(yf 
– yi) 

Time (s) X(m) Y(m)
0.0 0.0 0.0
0.2 3.1 2.4
0.4 6.1 4.4
0.6 9.2 6.0
0.8 12.2 7.2
1.0 15.3 8.0
1.2 18.4 8.4
1.4 21.4 8.5
1.6 24.5 8.1
1.8 27.5 7.3
2.0 30.6 6.2
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Deriving the Trajectory Equation   

•  Up to now we have been observing the behavior of  a projectile as the components of  its flight in time.  But we experience projectile motion more commonly as spatially 2-D motion (think about the arc of  
a football), not the individual X and Y motions in time. 

•  Then we want to derive an equation for the motion in Y as a function of  X.  If  we wanted to, we could simply generate our displacement vector using ​𝒅 =⟨xi + ​𝒗↓𝒊𝒙  t, yi + ​𝒗↓𝒊𝒚 t − ​𝒈​𝒕↑𝟐 /𝟐 ⟩ for the 
given span of  time we care about and plot these values.  But that takes two steps, generating x(t) and y(t) and then plotting them.   

•  Instead, we want to use x as an independent variable and see how y changes, with a single equation.   

•  Let’s start with solving x(t) for t.  xf = xi + ​𝒗↓𝒊𝒙  t ;  

•   xf – xi = ​𝒗↓𝒊𝒙  t ;  

•  𝒕= ​xf – xi/​𝒗↓𝒊𝒙    now substitute this into yf for t. 

•  yf = yi + ​𝒗↓𝒊𝒚 t − ​𝒈​𝒕↑𝟐 /𝟐 ;   yf = yi + ​𝒗↓𝒊𝒚 [​xf – xi/​𝒗↓𝒊𝒙  ] − ​𝒈​[​xf – xi/​𝒗↓𝒊𝒙  ]↑𝟐 /𝟐  

•  Now let us simplify this equation, first we’ll assume that xi =0 (we don’t care where the projectile was in x before it started flying away from us) then remember that viy = vi sin(Θ)  and  vix = vi cos(Θ)  and 
that sin/cos is equivalent to the tan(Θ) then 

•  y(x) = yi + tan(Θ)(x) − ​𝒈​(𝒙)↑𝟐 /𝟐 ​[​𝒗↓𝒊 𝒄𝒐𝒔(𝜽)]↑𝟐   

•  By doing this, we traded needing information on time for needing information about only the initial velocity vector. We don’t have to build x(t) and y(t) and plot them against each other, but only the initial 
condition of  the launch and then we can let x vary as we please and we’ll be able to determine how the projectile will move in y. 



Graphing the Trajectory of  a Projectile 
•  Let us use the same information as in our previous example.  The 

projectile was launched at 20ms-1 at 30° from the ground. Then let us 
generate our y(x) function. 

•  vix = 20cos(30°) = 17.3ms-1;  

•  viy = 20cos(30°) = 10ms-1; 

•  if  we launch from the ground then yi = 0.  Then our function looks like 

•  y(x) = yi + tan(Θ)(x) − ​𝒈​(𝒙)↑𝟐 /𝟐 ​[​𝒗↓𝒊 𝒄𝒐𝒔(𝜽)]↑𝟐   

•  y(x) = tan(30°)(x) − ​𝒈​(𝒙)↑𝟐 /𝟐 ​[𝟐𝟎𝒄𝒐𝒔(30°)]↑𝟐   

•  y(x) = .58(x) – ​𝟒.𝟗 ​(𝒙)↑𝟐 /​[𝟏𝟕.𝟑]↑𝟐   

•  If  we want to determine how far the projectile will travel in x we can 
solve this quadratic equation and determine the zeros or roots. 

•  Remember that quad form is x = -b ± ​√⁠​𝑏↑2 −4𝑎𝑐 /2𝑎  then our 
trajectory has terms A = - ​𝟒.𝟗/​[𝟏𝟕.𝟑]↑𝟐  ; B = 0.58; and C = 0.  Find 
the zeros. 

•  Once that is known let’s create a t-table using values from initial to final 
position in x by 5s.  

X (m) Y (m)
0 0
5 2.49075
10 4.163
15 5.01675
20 5.052
25 4.26875
30 2.667
35 0.24675

y = -0.0164x2 + 0.58x - 9E-15 
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Deriving the Level Range Equation 

•  It’s useful to be able to find our maximum height for a projectile either by solving for the position in y for which vy is zero or by completing the square for the vertex of  either the y(t) or 
y(x) position functions.   

•  But we’d also like to quickly determine the maximum range or distance in x for a projectile.  In order to do this let’s first recall the condition for a projectile to remain in the air: y > 0.  Then 
the locations where y = 0 are the locations where the projectile has stopped traveling.   

•  If  the displacement equation in y is yf = yi + ​𝒗↓𝒊𝒚 t − ​𝒈​𝒕↑𝟐 /𝟐  and we fire from level ground (assume yi = 0) then the range is the location in x for the time t we get from solving y(t) for 
the roots. 

•  In other words first let 0 = ​𝒗↓𝒊𝒚 t − ​𝒈​𝒕↑𝟐 /𝟐  be the condition to be in the air.  We can use the quadratic equation but, thanks to our C term being 0 we have a shortcut 

•  0 = t( ​𝒗↓𝒊𝒚 − ​𝒈𝒕/𝟐 ); then t = 0  and 0 = ​𝒗↓𝒊𝒚 − ​𝒈𝒕/𝟐  are our roots.  Solve for t. 

•  ​𝒈𝒕/𝟐  =  ​𝒗↓𝒊𝒚 ;      t = ​𝟐 ​𝒗↓𝒊𝒚 /𝒈 ;  Now we can substitute this value of  t into the equation for x(t) and remember that xi is 0. 

•  Then xf = xi + ​𝒗↓𝒊𝒙  t;   xf = ​𝒗↓𝒊𝒙 [​𝟐 ​𝒗↓𝒊𝒚 /𝒈 ] 

•  This is then the Range equation in its most basic form. It is frequently beneficial to re-write this equation in terms of  the initial velocity vector though.  Remember that viy = vi sin(Θ)  and  
vix = vi cos(Θ) 

•  R =​ 𝒗↓𝒊𝒙 [​𝟐 ​𝒗↓𝒊𝒚 /𝒈 ];   R =​2​𝑣↓𝑖↑2 𝒔𝒊𝒏(𝜽)𝒄𝒐𝒔(𝜽) /𝑔   By using the trig identity 2sin(X)cos(X)=sin(2X) we arrive at our final range equation 

•  R= ​​𝒗↓𝒊↑𝟐 𝒔𝒊𝒏(𝟐𝜽)/𝒈  



Cannon Example and IB Practice 

•  PRACTICE: A cannon fires a projectile with a muzzle 
velocity of  56 ms-1 at an angle of  inclination of  15º.  

•  (a) What are vix and viy? (remember that in IB terms this is ux 
and uy) 

•  (b) What are the tailored equations of  motion?  

•  (c) When will the ball reach its maximum height? 

•  (d) How far from the muzzle will the ball be when it reaches 
the height of  the muzzle at the end of  its trajectory? 

•  (e) Sketch the following graphs:  

 a vs. t,     vx vs. t;  vy vs. t   x vs. t;    y vs. t;   and   y(x) 



More IB Sample Questions 



Even More IB Test Questions 



Section 2.2: Dynamics 
Force and Free Body Diagrams 

Recommended Practice Giancoli Chp 4 

Questions: 2, 3, 9, 13, 17 

Problems:   2, 3, 5, 6, 9, 16, 19, 25, 27, 32, 41, 45, 52, 58, 64 

 



Section 2 Objectives 

 Core Principles 
•  Mass as a property of  matter 

•  Objects as point particles  

•  Free-body diagrams  

•  Translational equilibrium  

•  Newton’s laws of  motion  

•  Solid friction  

•  Motion in Circles and Centripetal Forces 

•  Gravitational Force and Satellites 

Applications and skills:  
•  Representing forces as vectors  
•  Sketching and interpreting free-body diagrams  
•  Describing the consequences of  Newton’s first law for translational 

equilibrium  
•  Using Newton’s second law quantitatively and qualitatively  
•  Identifying force pairs in the context of  Newton’s third law  
•  Solving problems involving forces and determining resultant force  
•  Describing solid friction (static and dynamic) by coefficients of  

friction  
•  Understand centripetal acceleration and how to apply dynamics to 

rotating systems and forces keeping objects in Uniform Circular 
Motion 

•  Define the gravitational force and understand how it applies to 
objects in orbit. 

 



ToK and Aims 

Theory of  knowledge:  

Classical physics believed that the whole of  the future of  the universe could be predicted from knowledge of  
the present state. To what extent can knowledge of  the present give us knowledge of  the future? 

 Aims:  

•  Aims 2 and 3: Newton’s work is often described by the quote from a letter he wrote to his rival, Robert 
Hooke, which states: “What Descartes did was a good step. You have added much [in] several ways. If  I have 
seen a little further it is by standing on the shoulders of  Giants.” This quote is also inspired, this time by 
writers who had been using versions of  it for at least 500 years before Newton’s time.  

•  Aim 6: experiments could include (but are not limited to): verification of  Newton’s second law; investigating 
forces in equilibrium; determination of  the effects of  friction. 



Dynamics 

Study of  Force 
Essential idea: Classical physics requires a force to change 

a state of  motion, as suggested by Newton in his laws 
of  motion. 

Nature of  science: (1) Using mathematics: Isaac Newton 
provided the basis for much of  our understanding of  
forces and motion by formalizing the previous work of  
scientists through the application of  mathematics by 
inventing calculus to assist with this. (2) Intuition: The 
tale of  the falling apple describes simply one of  the 
many flashes of  intuition that went into the publication 
of  Philosophiæ Naturalis Principia Mathematica in 
1687. 

Utilization:  
•   Motion of  charged particles in fields (see Physics sub-

topics 5.4, 6.1, 11.1, 12.2) 
•  Simple Machines and Force multipliers  
•  Application of  friction in circular motion (see Physics 

sub-topic 6.1) 
•  Biomechanics (see Sports, exercise and health science SL 

sub-topic 4.3) 
•  Communications Satellites and the motion of  planets 
 



What is force? 

 Acceleration 
•  As previously discussed, acceleration is the rate of  change of  

velocity.   

•  It is also then the second derivative of  position/displacement 
(a rate of  a rate). 

•  Acceleration is a vector quantity where the direction is 
reflected in the change in velocity. 

 Mass 
•  Mass is the inertial property of  matter. 

•  Massive objects resist change to their motions, which means it requires 
a greater force to accelerate them. 

•  You can observe this by attempting to move 2 objects, your pencil and 
the table. Moving one with your finger is easy, the other exceedingly 
difficult. 

•  Mass is a scalar quantity 

Force: defined as a push or pull in a certain direction. Force is a vector quantity and results from the product of  
mass and acceleration (we’ll discuss this more later) F=ma. Then the units for force are kgm-2 which have been 
abbreviated by the synthetic unit Newton (N).  

Common Forces: Gravity, Tension, Friction, Normal, and Centripetal 
We commonly refer to the force of  gravity at the Earth’s surface as “weight” and has the very specific value of  mg or the mass of  the object times the 
acceleration due to gravity at the Earth’s surface 9.8 or 10ms-2.  
Tension: is the force distributed along a rope or rigid line.  Tension in a line is the same anywhere on the rope and requires a counter force or anchor to bring 
the line to tautness, therefore tension is always a pull. 
Friction: is the force which opposes motion along a surface or through a fluid. This is one of  the most common forces and always acts in the direction of  –
velocity, it is also parallel to the contact surface. 
Normal force: refers to the force perpendicular to the surface of  contact between two objects. (Normal means perpendicular or at 90°) 

 



Newton’s First Law 

•  Galileo was actually the first to suggest this. He observed that an object in motion will naturally remain in motion at a 
constant velocity until something outside of  that object acted on it. 

•  You can simulate this with a steel ball on a hard surface or an air hockey table in either case, moving the object requires 
some input of  force but once applied the object is free to move and will do so at constant velocity until some unbalanced 
force acts. 

•  Newton’s First Law:  A body continues in its state of  rest or uniform velocity as long as no net force acts on it.  AKA Law 
of  Inertia 

•  Inertial Reference Frames:  classical mechanics are based upon the assumption that objects share a fixed reference frame on 
which no external forces are acting on the system.  This is not always true:  

•  Ex: when you are in a car and the car accelerates you and the car share a reference and both accelerate in the same 
direction.  The cup of  scalding hot coffee you placed on the dash moments prior does not always share this and slides 
towards you.  In this case you and the car share an inertial reference (you both have the same velocity at all times then the 
reference frame consisting of  all things moving with shared velocity of  the car are an inertial reference frame).   



Newton’s Second Law 

•  If  an object will move constantly when in motion then what will change that motion? 

•  When the velocity of  an object changes, then it experiences an acceleration, when a mass accelerates it 
experiences a Net Force or a force which has not been offset by any other (remember, forces are 
vectors) 

•  How much acceleration an object experiences is directly proportional to the force applied (​𝑭  α ​𝒂  ).  
Forces are consequently also proportional to the mass of  the object being accelerated ( ​𝑭  α m ).   

•  These relationships lead Issac Newton to suppose that the acceleration of  an object, for a given force, 
was inversely proportional to its mass  ​𝒂  α ​𝟏/𝒎 .   

•  Newton’s 2nd Law:  The acceleration of  an object is directly proportional to the net force acting on it 
and is inversely proportional to its mass. The direction of  the acceleration is equal to the direction of  
the net force. Newton’s second law is written as  ∑↑▒​𝐹 =𝑚​𝑎   



Newton’s Third Law 

•  Often we see interactions between more than one object.  Generally, an object moves and experiences force because another object 
exerts a force on it.  However, when one object interacts with the other, the first is never unchanged.   

•  Ex: a hammer hits a nail and drives it into a surface.  The hammer exerts a force on the nail and pushes the nail into the substrate, but 
the hammer also comes to a stop.   

•  Newton’s Third Law: Whenever one object exerts a force on a second object, the second exerts an equal force in the opposite direction 
on the first. 

•  It can sometimes be confusing to work with such force pairs because you must keep track of  the forces applied both by the first on the 
second and the second on the first when determining motion of  the system.   

•  One way to keep things clear is by being careful to use subscripts to keep track:   

•  Ex: a person walking works by the person applying force to the ground. The person moves forward because the ground applies a force 
back on the person.  Then the force applied on the ground by the person (​​𝐹 ↓𝐺𝑃 ) is equal to the force on the person by the ground (​​𝐹 
↓𝑃𝐺 ), but in the opposite direction.   Then we can write this force pair as 

•  ​​𝐹 ↓𝐺𝑃  = -​​𝐹 ↓𝑃𝐺  



Free Body Diagram 

•  In order to solve problems involving Newton’s 2nd law we need to have a way to determine which forces may or may not be in balance.  

(remember ​𝑭 net = ∑↑▒​𝐹 =𝑚​𝑎  ).   
•  The best way to do this is by treating the object as a point mass (assuming all the mass is consisting of  a single point) and therefore draw 

the object as a small box or dot.  Then we draw all the forces acting on that object as vector arrows with their origins at the point mass.  
This diagram of  forces is called a Free Body Diagram (FBD) 

•  Ex:  Determine all the forces acting on a box resting on a tabletop. Then draw a FBD for the book 

 

 

•  Ex: Draw the FBD for the book if  it is being pulled horizontally to the right by a string across a table with friction.  Now for a box pulled 
at a 30° angle with respect to the table 

Fg = mg 

Fg = mg 

FN 

FN 
FT 

FF 

Fg = mg 

FN FT 

FTx 

FTy 

FF 

Θ 



Applying Newton’s Laws 
•  Ex: When we worked with ideal projectiles we noted that the 

limiting factor for the flight of  the projectile was the motion in y, 
use Newton’s 1st law to explain this. 

•  Ex: A book with mass 2.5kg rests on a tabletop.  How much force 
must be applied to cause it to accelerate at 2ms-2?  If  it slides with a 
velocity after the push of  2ms-1 to a stop after traveling 0.75m, what 
is the force friction applies to the book to stop it? 

•  Ex: A 5kg box rests on a table.  If  a rope anchored to the box is 
pulled with a force of  25N; 20° what is the horizontal acceleration 
(assume no friction)?  What is the normal force? 
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xi = 0                                                                        xf  = 0.75 
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Problem with Tension and Connected Masses 

•  As previously mentioned tension is a force which is created when a force is applied to a flexible cord.  If  the cord has a 
negligible mass compared to the forces being applied to it (an assumption) then the force is transmitted unchanged 
throughout the length of  the cord. This is because m ≈ 0 and F=ma is zero when m=0. 

•  Then the forces pulling on either end of  the cord must sum to zero (FT and –FT ) 

Ex: For 2 masses connected by a cord with the rightmost mass being pulled by a force, Draw the FBD for BOTH masses 

Given the information below, calculate the acceleration of  each box and the tension in the cord connecting each box 
(assume the connecting cord remains taut and of  fixed length).   

 

Fg = m1g 

FT 
FN M1 = 10kg 

Fg = m2g 

Fapplied = 60N 

FT 

FN M2 = 15kg 

M2 = 15kg M1 = 10kg 
Fapplied = 60N 

For M1  

∑↑▒​​𝐹↓𝑥  = ​𝑚↓1 ​​
𝑎↓𝑥  = ​
𝐹↓𝑎𝑝𝑝𝑙𝑖𝑒𝑑 − ​
𝐹↓𝑇   
For M2 

∑↑▒​​𝐹↓𝑥  = ​𝑚↓2 ​​
𝑎↓𝑥  = ​𝐹↓𝑇   

For M1 and M2 
FT = FT and ax is the same, then 
For M1 

​𝐹↓𝑇 = ​𝐹↓𝑎𝑝𝑝𝑙𝑖𝑒𝑑 
− ​𝑚↓1 ​​𝑎↓𝑥   
For M2 

​𝐹↓𝑇 ​=𝑚↓2 ​​𝑎↓𝑥   

​𝑚↓2 ​​𝑎↓𝑥  ​=𝐹↓𝑎𝑝𝑝𝑙𝑖𝑒𝑑 
− ​𝑚↓1 ​​𝑎↓𝑥   
 

​𝑚↓2 ​​𝑎↓𝑥  +​𝑚↓1 ​​𝑎↓𝑥  ​
=𝐹↓𝑎𝑝𝑝𝑙𝑖𝑒𝑑  
 

​​𝑎↓𝑥  = ​​𝐹↓𝑎𝑝𝑝𝑙𝑖𝑒𝑑 /(​
𝑚↓1 + ​𝑚↓2 )  = ​60𝑁/
(10𝑘𝑔+15𝑘𝑔) 
=𝟐.𝟒𝒎​𝒔↑−𝟐  

​𝐹↓𝑇 ​=𝑚↓2 ​​𝑎↓𝑥   
 

​𝐹↓𝑇 
=15𝑘𝑔(2.4𝑚​𝑠↑
−2 )=𝟑𝟔𝑵 



Elevator Problems (Atwood Machines) 

When a mass is connected to another over a pulley a system of  hanging masses is created whose gravitational forces offset.  This is due to the ability of  a cable to 
supply tension to both masses and the same direction.  This principle is used to minimize the strength of  a motor needed to operate an elevator system.  

Ex:  Consider an elevator (mE = 1150kg) and its counterweight (mC = 1000kg) suspended as shown in the diagram. If  there is no motor and the brakes release in 
what direction will the elevator and counterweight move? Given what you know about systems of  masses connected by a cable calculate         a) acceleration of  the 
elevator b) tension in the cable 

 For mE  

∑↑▒​​𝐹↓𝑦  = ​𝑚↓𝐸 ​​
𝑎↓𝑦  = ​𝐹↓𝑇 − ​
𝑚↓𝐸 𝑔  
​−𝑚↓𝐸 ​𝑎↓𝑦 = ​𝐹↓𝑇 
− ​𝑚↓𝐸 𝑔 
 

​𝐹↓𝑇  = ​−𝑚↓𝐸 ​
𝑎↓𝑦 +​𝑚↓𝐸 𝑔 
 
For mC 

∑↑▒​​𝐹↓𝑦  = ​𝑚↓𝐶 ​​
𝑎↓𝑦  = ​𝐹↓𝑇  − ​
𝑚↓𝐶 𝑔 

​𝑚↓𝐶 ​​𝑎↓𝑦  = ​𝐹↓𝑇 
− ​𝑚↓𝐶 𝑔 
 

​𝐹↓𝑇  =​ 𝑚↓𝐶 ​​𝑎↓𝑦  
+​𝑚↓𝐶 𝑔 
 
 

FT = FT  
 

​−𝑚↓𝐸 ​𝑎↓𝑦 +​𝑚↓𝐸 𝑔= ​ 𝑚↓𝐶 ​𝑎↓𝑦 
+​𝑚↓𝐶 𝑔 
 

​𝑚↓𝐸 ​𝑎↓𝑦 +​ 𝑚↓𝐶 ​𝑎↓𝑦  = ​𝑚↓𝐸 𝑔-​
𝑚↓𝐶 𝑔 
 

​𝑎↓𝑦 = 𝑔​(​𝑚↓𝐸 − ​𝑚↓𝐶 )/(​𝑚↓𝐸 + ​ 
𝑚↓𝐶 )  = 𝑔​(1150𝑘𝑔
−1000𝑘𝑔)/(1150𝑘𝑔
+1000𝑘𝑔)  = 0.7ms-2 



​𝑎↓𝐸  = - 0.7ms-2 
 

FT =  ​ 𝑚↓𝐶 ​​𝑎↓𝑦  +​𝑚↓𝐶 𝑔 
 
FT = 1000kg (0.7ms-2 + 10ms-2) = 10.7(103)N 
 
 
 
 
 
 



Tension as a Force Multiplier 

•  There is another method to utilize tension to multiply the amount of  force you must input into a system compared to 
the force you can exert on an object.  This method takes advantage of  an anchor, pulleys, and the fact that tension is 
uniform along the length of  a cable and has equal but opposite forces at the ends.    

 Block and Tackle 
By running a cable over a fixed pulley through a movable pulley 
(or multiple pulleys) you can create a system which uses a fixed 
anchor and tension to move far heavier loads than possible 
unassisted.  
Common set ups:         
 

 

Ex: Gun tackle, using the provided diagrams, draw the free 
body diagram for the mass being lifted and calculate the 
mechanical advantage of  this system.  (note MA= mgT-1) 

mg 

FT1 FT2 

FBD 

∑↑▒​​𝐹↓𝑦  =𝑚​​𝑎↓𝑦  = ​
0=𝐹↓𝑇1 + ​𝐹↓𝑇2  −𝑚𝑔 
0= FT1 + FT2 –mg 
 
mg= FT1 + FT2  
 
mg = 2FT  
 

FT = ​𝑚𝑔/2  
 

MA = ​𝑚𝑔/​𝐹↓𝑇  = ​𝑚𝑔/​
𝑚𝑔/2   = 2 
 

Try yourself: Double tackle, use the same analysis as 
in the previous problem to determine the MA of  this 
system.  How much force would need to be applied to 
lift 1000kg? 















Section 2.3: Work and Energy 
Conservation of  Energy and the Energy of  Motion/Position 



Section 2.4: Momentum and 
Impulse 

Changes in Energy in Time and Collisions 

 



Section 4 Objectives 

 Core Principles 

•  Newton’s second law expressed in 
terms of  rate of  change of  
momentum  

•  Impulse and force – time graphs  

•  Conservation of  linear momentum  

•  Elastic collisions, inelastic collisions 
and explosions 

Applications and skills:  
•  Applying conservation of  momentum in simple isolated 

systems including (but not limited to) collisions, explosions, 
or water jets  

•  Using Newton’s second law quantitatively and qualitatively 
in cases where mass is not constant  

•   Sketching and interpreting force – time graphs  
•  Determining impulse in various contexts including (but not 

limited to) car safety and sports  
•  Qualitatively and quantitatively comparing situations 

involving elastic collisions, inelastic collisions and 
explosions  

 



ToK and Aims 

Theory of  knowledge:  

Do conservation laws restrict or enable further development in physics? 

Aims:  

•  Aim 3: conservation laws in science disciplines have played a major role in outlining the limits within which 
scientific theories are developed  

•  Aim 6: experiments could include (but are not limited to): analysis of  collisions with respect to energy 
transfer; impulse investigations to determine velocity, force, time, or mass; determination of  amount of  
transformed energy in inelastic collisions  

•  Aim 7: technology has allowed for more accurate and precise measurements of  force and momentum, 
including video analysis of  real-life collisions and modelling/simulations of  molecular collisions 



Momentum and Impulse 

Study of  Momentum 
•  Students should be aware that F = ma is the equivalent of  

F = Δp / Δt only when mass is constant  

•  Solving simultaneous equations involving conservation of  
momentum and energy in collisions will not be required  

•  Calculations relating to collisions and explosions will be 
restricted to one-dimensional situations  

•  A comparison between energy involved in inelastic 
collisions (in which kinetic energy is not conserved) and 
the conservation of  (total) energy should be made 

Utilization:  
•  Jet engines and rockets 
•  Particle theory and collisions (see Physics sub-topic 3.1)  
•  Students should be aware that F = ma is the equivalent of  F = 

Δp / Δt only when mass is constant  
•  Solving simultaneous equations involving conservation of  

momentum and energy in collisions will not be required  
•  Calculations relating to collisions and explosions will be restricted 

to one-dimensional situations  
•  A comparison between energy involved in inelastic collisions (in 

which kinetic energy is not conserved) and the conservation of  
(total) energy should be made 



Momentum 
•  Linear momentum refers to the quantity described by the mass of  an object multiplied by its velocity and is denoted with the symbol (p).  Then the units for linear 

momentum are kgms-1.  As was the case for Force being a vector due to the product of  a scalar and a vector, so too is momentum a vector. 

•  Momentum can be described in terms of  Newton’s 2nd Law via the following derivation 

•  Remember that a = ​Δ𝑣/Δ𝑡  , and note that the delta refers to change from an initial value.   

•  If  NII is ∑↑▒​𝐹 =𝑚​𝑎    then we can rewrite this as ∑↑▒​𝐹 =𝑚​Δ𝑣/Δ𝑡   

•  Then the sum of  forces acting on an object equals the product of  its mass and its change in velocity. 

•  p = m𝑣;  then a change in momentum in time is ​Δp/Δ𝑡 = ​𝑚​𝑣↓𝑓 −​𝑚𝑣↓𝑖 /Δ𝑡  ; 

•  If  mass remains constant then we can rewrite this as Δp = ​𝑚​(𝑣↓𝑓 −​𝑣↓𝑖 )/Δ𝑡  and remember that Δ𝑣 = ​(𝑣↓𝑓 −​𝑣↓𝑖 ) 

•  Then this becomes ​Δp/Δ𝑡  = m​Δ𝑣/Δ𝑡  = ∑↑▒​𝐹   or, written more familiarly as 

•  ∑↑▒​𝐹   = ​Δp/Δ𝑡    the sum of  forces acting on an object equals its change in momentum in time.  In general, mass can change (such as is the case for rockets) and so when we 
use this equation in the general case we have to consider Δp = mfvf – mivi .   

•  Ex:  What is the linear momentum of  a 4.0-gram NATO SS 109 bullet traveling at 950 ms-1? 

•  Ex:  A 6-kg object increases its speed from 5 m s-1 to 25 m s-1 in 30 s. What is the net force acting on it? 

Data booklet reference:  
•  p = mv 
•  F = Δp / Δt 
•  EK = p 2 / (2m) 
•Impulse = F Δt = Δp 



Momentum and Kinetic Energy 

•  Given the relationship between force and momentum it should come as no surprise then that momentum and kinetic energy are related.  We can write the 
kinetic energy equation in terms of  momentum via the following rearrangement: 

•  If  𝑝=𝑚𝑣 and KE = ​𝑚​𝑣↑2 /2  then first let us solve the momentum equation for velocity 

•  𝑣= ​𝑝/𝑚 ; substitute this into the equation for kinetic energy and simplify 

•  KE = ​𝑚​[​𝑝/𝑚 ]↑2 /2  = ​𝑚​𝑝↑2 /2​𝑚↑2  ;  
•  Then KE = ​​𝑝↑2 /2𝑚    (Now verify this equation using dimensional analysis) 

•  If  KE can be written in terms of  momentum and there is a conservation of  energy law                                                                                                                  
it should come as no surprise that there exists a law for the conservation of  momentum                                                                                                                 
in a system. 

•  This conservation of  momentum is best explained by considering the momentum form of  NII.  If  no external force acts on the objects in a system (that is, 

moving objects with momentum interacting) then ∑↑▒​𝐹   = ​Δp/Δ𝑡  = 0 or the total momentum is constant in time. 

PRACTICE: What is the kinetic                                        
energy of  a 4.0-gram NATO SS 109                                    
bullet traveling at 950 m/s  and having                                         
a momentum of   3.8 kg m s-1? 

SOLUTION: You can work from                                   
scratch using EK = (1/2)mv 

2 or you                                
can use EK = p 2 / (2m).  

•Let’s use the new formula… 

                   EK = p 2 / (2m) 

                        = 3.8 2 / (2×0.004) 

                        = 1800 J. 
 



Collisions and Momentum 

•  A collision is an event in which a relatively strong force acts on two or more bodies for a relatively short 
time. 

Ex: The Meteor Crater in the state of  Arizona  was the first                        
crater to be identified as an impact crater.  

The object which hit was estimated to have released                         
3.8Megatons of  energy.  Assuming that all of  the kinetic energy                                                                                           
of  the meteor was released, and the estimated velocity of  the                                                                                       
meteor  is accurate (15km/s) estimate the mass of  the meteor.   

What then would have been the momentum of  the meteor? 

 

Given the extreme forces acting during the duration of  this collision then how significant were the external 
forces of  this impact?  Is it safe to assume that momentum could be conserved during the collision?   



 Observing Collisions 

•  A collision between bodies has 3 distinct phases: Before, During, After.  It is important to keep track 
of  the momentum for EACH object during the collision in order to determine the forces and changes 
in momentum for the objects. 

Before 

p1i = m1vi1       p1i = m2v2 

During 

    F1,2 = Δp1   F2,1 = 
Δp2 

After 

p1f = m1vf1        p2f = m2v2f 
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Conservation of  Momentum 

•  Collisions can be defined as closed systems, with system boundaries consisting of  the objects involved in the collision only.  This is 
useful as it allows us to derive a conservation law from the fact that the sum of  external forces on the system is zero.  This law is based 
on NII and NIII and can be derived in several ways.   

•  Let object A have momentum ​​𝒑 ↓𝑨 = ​𝒎↓𝑨 ​​𝒗 ↓𝑨  initially and object B have initial momentum ​​𝒑 ↓𝑩 = ​𝒎↓𝑩 ​​𝒗 ↓𝑩  
•  Then the total momentum of  the closed system is the vector sum ​​𝑝 ↓𝑠𝑦𝑠𝑡𝑒𝑚 = ​​𝑝 ↓𝐴 +​​𝑝 ↓𝐵  = ​𝑚↓𝐴 ​​𝑣 ↓𝐴 +​𝑚↓𝐵 ​​𝑣 

↓𝐵  
•  Following the collision each object has a momentum ​​𝑝 ↓𝑠𝑦𝑠𝑡𝑒𝑚↑ ′ = ​​​​𝑝 ↓𝐴↑ ↑′ + ​​𝑝 ↓𝐵↑′ =𝑚↓𝐴 ​​𝑣 ↓𝐴↑′ + ​

𝑚↓𝐵 ​​𝑣 ↓𝐵 ′ 
•  Then the change in momentum Δ​​𝑝 ↓𝑠𝑦𝑠𝑡𝑒𝑚 = ​​𝑝 ↓𝑠𝑦𝑠𝑡𝑒𝑚↑′ − ​​𝑝 ↓𝑠𝑦𝑠𝑡𝑒𝑚  = (​𝑚↓𝐴 ​​𝑣 ↓𝐴↑′ +​𝑚↓𝐵 ​​𝑣 ↓𝐵 

′) - (​𝑚↓𝐴 ​​𝑣 ↓𝐴 +​𝑚↓𝐵 ​​𝑣 ↓𝐵 ) 
•  Now remember that ΣFsystem =  ​Δ​​𝒑 ↓𝒔𝒚𝒔𝒕𝒆𝒎 /Δ𝒕  
•  But according to NII, ΣFsystem Δt = 0 = Δ​​𝒑 ↓𝒔𝒚𝒔𝒕𝒆𝒎  =​​𝒑 ↓𝒔𝒚𝒔𝒕𝒆𝒎↑′ − ​​𝒑 ↓𝒔𝒚𝒔𝒕𝒆𝒎 = ( ​𝒎↓𝑨 ​​𝒗 ↓𝑨↑′ +​

𝒎↓𝑩 ​​𝒗 ↓𝑩 ′) - ( ​𝒎↓𝑨 ​​𝒗 ↓𝑨 +​𝒎↓𝑩 ​​𝒗 ↓𝑩 )  
•  Then ​​𝑝 ↓𝑠𝑦𝑠𝑡𝑒𝑚  = ​​𝑝 ↓𝑠𝑦𝑠𝑡𝑒𝑚↑ ′  
•  And ​𝒎↓𝑨 ​​𝒗 ↓𝑨 +​𝒎↓𝑩 ​​𝒗 ↓𝑩 = ​𝒎↓𝑨 ​​𝒗 ↓𝑨 ′+​𝒎↓𝑩 ​​𝒗 ↓𝑩 ′  Conservation of  Linear Momentum 



Conservation Examples 

•  Ex: A 10,000kg railroad car A is traveling with a velocity of  24ms-1 to the east and strikes a car B whose mass is the same but is at rest.  If  
the cars lock together then what is the common velocity of  the cars afterwards? 

 pinitial = ​𝑚↓𝐴 ​​𝑣 ↓𝐴 +​ 𝑚↓𝐵 ​​
𝑣 ↓𝐵  = ​𝑚↓𝐴 ​​𝑣 ↓𝐴  
 
pfinal = (mA + mB)v’ 
 
pinitial = pfinal 

mAvA = (mA + mB)v’ 
 

v’ = ​mAvA/(mA + mB)  

•  Ex: calculate the velocity of  recoil for a 5kg rifle firing a .020kg bullet with a speed of  620ms-1.  Using this information then estimate the 
felt recoil (force) and compare shooting a rifle with a long barrel against shooting the same rifle but with a cut off  barrel. 

 
The system for a rifle and bullet 
consists of  both objects having no 
momentum (v=0).  Following the 
ignition of  the primer the bullet is 
launched from the muzzle by a 
column of  exploding gases.  The 
bullet leaves moving in one direction 
but the rifle must then move in the 
opposite to conserve momentum. 

pinitial = ​𝑚↓𝑅 ​​𝑣 ↓𝑅 +​ 𝑚↓𝐵 ​​
𝑣 ↓𝐵  = 0 
 

pfinal = ​𝑚↓𝑅 ​​𝑣 ↓𝑅 ′+​ 𝑚↓𝐵 ​​
𝑣 ↓𝐵↑′  
 
pinitial= pfinal  
 

0 = ​𝑚↓𝑅 ​​𝑣 ↓𝑅 ′+​ 𝑚↓𝐵 ​​𝑣 
↓𝐵↑′  
 

​ 𝑚↓𝐵 ​​𝑣 ↓𝐵↑′  = ​−𝑚↓𝑅 ​​𝑣 ↓𝑅 ′ 
 

​​𝑣 ↓𝑅 ′ = ​​ −𝑚↓𝐵 ​​𝑣 ↓𝐵↑′ /​
𝑚↓𝑅    
 

​​𝑣 ↓𝑅 ′ = ​−0.020𝑘𝑔∙620𝑚​𝑠↑
−1 /5𝑘𝑔  =  -2.48ms-1 

 
v’ =  ​10,000kg∙24ms−1/(20,000kg)  =12ms-1 

∑↑▒𝐹 = ​∆𝑝/∆𝑡      What 
information might you need to 
assume? 
Then assume that the rifle recoil lasts 
about 0.3 seconds. 
F = 5kg·2.48ms-1 · 0.30s-1 ≈ 40N 
What about reducing the barrel?   
What does the butt pad do? 



Impulse 

•  In the last example we discussed the effect of  time over which a momentum changes as being related to force.  Consider the 
force/time graph for the two objects during a collision:  
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•  We have shown previously that NII can be used to 
describe a change in momentum via , F ·Δt = Δp.  
Recall that this is similar to another situation 
(calculating displacement as Δx = v·Δt) 

•  Then likewise we can calculate the change in 
momentum by finding the area under a force time 
curve. 

•  Impulse : this is defined as the change in momentum 
calculated from F ·Δt.  Impulse has the symbol J (not 
to be confused with the unit J for Joules in energy).   

Ex: Estimate the impulse on object 1 during this collision.  
What do you notice about the impulse on 1 and 2? 



More Practice for Impulse 

•  EXAMPLE:  A 0.140-kg baseball comes in at 40.0 m/s, strikes the bat, and goes back out at 50.0 m/s.  If  the collision lasts 1.20 ms (this is a 
typical value): 

•   a) find the impulse imparted to the ball from the bat during the collision 

•   b) find the average force which acted on the ball during the collision with the bat 

•  c) estimate the impulse from the provided table of  time and force values 

a) SOLUTION:  
J = Δp = mv’ – mv  
= 0.140kg(50 - -40)ms-1 = 12.6kgms-1 

b) SOLUTION:  

J = Δp = ¯𝐹 Δt 

12.6kgms-1 = ¯𝐹 ∙.0012s 

¯𝐹  = ​12.6𝑘𝑔𝑚​𝑠↑−1 /0.0012𝑠  = 
10,500N 

Time (s) Force (N) 
0 0 

0.0002 0 
0.0004 4 
0.0006 27 
0.0008 460 
0.001 1500 

0.0012 5300 
0.0014 19,500 
0.0016 6200 
0.0018 3200 
0.002 950 

0.0022 45 
0.0024 10 
0.0026 0 
0.0028 0 
0.003 0 

0 0 4 27 460 
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Momentum and Rockets 

•  When a rocket is launched, fuel is burned rapidly which produces a steady supply of  exhaust gases moving at very high velocity.  Then the 
expelled gas has a tremendous momentum.  In order for the momentum of  the rocket body and gas system to be conserved, the rocket must also 
be given an equal and opposite momentum.   

Draw the rocket/exhaust system including the FBD for the rocket.  What is NII for this situation?  

How does this system differ from previous examples in this unit?   

Ex: a 25,000kg rocket burns fuel at a rate of  275kgs-1 and produces exhaust gases moving at 1250ms-1.    

Determine the thrust of  this rocket. 

Bonus:  At home determine the final velocity of  the rocket if  it holds 10,000kg of  fuel when all the fuel is consumed (burnout).  Show your work and 
include a description of  the solution.  +15points on momentum exam 

Ex: How does a jet engine produce thrust?  

 

 

Rocket exhaust 

Air is pulled into the intake with a certain velocity and then heated and accelerated by the turbine 
fans.  It is ejected at a much higher velocity which generates a powerful thrust due to the change 
in air momentum produces by the engine. 



Elastic and Inelastic Collisions 

•  Elastic collisions defined as collisions in which all momentum is conserved 
and kinetic energy is conserved as well 

•  Then ma va + mb vb = mav’a + mbv’b and KEa +Keb = KE’a + KE’b  


