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Section 2.1: Kinematics

Study of Motion and Projectiles
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Section 1 Objectives

Core Principles
Distance and displacement
Speed and velocity
Acceleration
Graphs describing motion

Equations of motion for uniform
acceleration

Projectile motion

Fluid resistance and terminal speed

Applications and skills:

Determining instantaneous and average values for velocity,
speed and acceleration

Solving problems using equations of motion for uniform -
acceleration

Sketching and interpreting motion graphs

Determining the acceleration of free-fall experimentally

Analysing projectile motion, including the resolution of

vertical and horizontal components of acceleration, velocity

and displacement

Qualitatively describing the effect of fluid resistance on

falling objects or projectiles, including reaching terminal

speed




ToK and Aims

Theory of knowledge:

The independence of horizontal and vertical motion in projectile motion seems to be counter-intuitive. How do
scientists work around their intuitions? How do scientists make use of their intuitions?

Aims:

* Aim 2: much of the development of classical physics has been built on the advances in kinematics

Aim 6: experiments, including use of data logging, could include (but are not limited to): determination of g,
estimating speed using travel timetables, analysing projectile motion, and investigating motion through a fluid

Aim 7: technology has allowed for more accurate and precise measurements of motion, including video
analysis of real-life projectiles and modelling/simulations of terminal velocity




Historical Perspective of Mechanics

Galileo Isaac Newton

One of the first to treat vertical and ° Expanded on the principles Galileo identified and

Horzontl motoR s distinctly separate developed differential calculus to describe the
(thinking T tors) motions of objects in terms of derivatives and

changing functions in time.

D ?mf)nsuated many of the f(.)und.atlonal * Identified the relation of force to motion and the
principles of motion such as inertia, property of matter as the property which opposes
uniform rates of falling objects, and the changes in motion.

attraction of the Eai_'th and objects on it as * Developed the 3 laws of motion which were
similar to the attraction of the Sun to the heavily based on Galileos hypothesis but included
Earth. forces.




Kinematics

Study of Motion

Essential idea: Motion may be described and
analyzed by the use of graphs and equations.

Nature of science: Obsetrvations: The ideas of
motion are fundamental to many areas of
physics, providing a link to the consideration
of forces and their implication. The
kinematic equations for uniform acceleration
were developed through careful observations
of the natural world.

Utilization:
Diving, parachuting and similar activities where fluid
resistance affects motion

* The accurate use of ballistics requires careful analysis

* Biomechanics (see Sports, exercise and health science S
sub-topic 4.3)

* Quadratic functions (see Mathematics HI. sub-topic 2.6;
Mathematics S1. sub-topic 2.4; Mathematical studies S1. sub-
topic 6.5)

* The kinematic equations are treated in calculus form in

Mathematies HL. sub-topic 6.6 and Mathematics S1. sub-
topic 0.6




Position (denoted X or Y)

Kinematics 1s the study of displacement, velocity and acceleration, or in short, a study of motion.
* A study of motion begins with position and change in position.
Defining position

(1)  Distance: how far an object has traveled, without regard to point of origin or direction of travel (scalar

quantity)

(2)  Displacement: how far an object has traveled with respect to a point of origin, direction matters (vector

quantity)

Remember our discussions of vectors, positive and negative are useful ways to describe changes position in 1
dimension but falls into trouble when the vectors are multidimensional.

Ex: What is the
Distance?

Displacement?




Distance vs Displacement

Let us assume that a ball rests

on a track. If every colored *NOW for some detailed analysis of these two motions...

segment represents Im answe

the following: 1 2 2 X ( m )|
>

If the ball starts at

Position 1 and then moves to 3 2 X (m
position 2, what is the distanc <

traveled? The displacement? o [hjgplgcement Ax (or s) has the following formulas:

Now if it travels from positio: _
2 to position 3 what is the tot: AX = X — X displacement
distance traveled? The total 2 1 where x. is the final pOSIthI’?
displacement? S=X,—X 2

2 and x, is the initial position




Changes in Position 1n Time

* Using the previous example, say that the ball traveled the first leg (from 1 to 2) in 3 seconds. Now assume that it
traveled from 2 to 3 in 5 seconds.

- * Graph this motion with the position on the y axis and the time on the x axis (let time start when the ball starts rolling
o

so initially t=0).

Note that the slope of the line for the position/time graph is gained by using m = xJf —xdi /6l f —tll this

equation can be written in terms of changes in x and t using delta notation, then » = Ax/A¢ is the rate at which the ball
moves.

* The physical quantity for the rate an object moves through a displacement is Velocity.

* Then we have calculated the average velocity of the ball through each segment of its motion. How does this value
change if we take the average over the entire duration?




Velocity and Speed

Here we have a Displacement/time graph. Find the average
velocity from t=0 to t=10s. Do the same for t=15 to 30s.
What is the sign of the two slopes telling us?

Find the average velocity from t=0 to t=30s. Now find the

average speed from t=0 to t=30s.
Why are they different?
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Changes in Velocity in time

* A caris traveling 20ms! down the road. If it does so for 15 seconds how far has it traveled?

*  Now, draw the velocity/time plot for a car which is initially traveling 20ms™ for 5 seconds, slows down steadily to a very brief stop
after 3 seconds, then smoothly reverses to -5ms™! over the next 8 seconds and then maintains that velocity for the next 4 seconds.

* Find the slope of the velocity curve for each distinct line segment using the same slope formula as for the position time
graphm = vl f —vli /tlf —¢tli .

°  You can re-write this in delta notation just as previously, 2 = Av/A¢ then we have calculated the average acceleration for the car
during these times. What is the derived unit for acceleration?

* Lastly, find the area under the entire curve (t=0 to t=20s)
* (Hint: Don’t forget to write units when you perform the calculations)

*  What have you found when you computed this area?




Average and Instantaneous Velocity

We can label each position with an x and the time interval between each x
with a Az

Then g, =00 -5/ An | 2 = (& - )/ Ay and finally Ve = (¢4 - 20)/ At
Focus on the interval from x;, to x;.

Note that the speed changed from x;, to x;, and so #; is NOT really the speed
for that whole interval.

We say the »; 1s an average speed (as are v, and »).




An Experiment in Acceleration

In the early 1950s military aeronautical engineers
were researching the effects of acceleration on
the human body and were concluding (without
much evidence) that the human body couldn’t
survive the stress of a rapid ejection system and
so put little emphasis on pilot safety belts and
ejection seats (assuming that the conditions of
the ejection would be roughly as lethal as the
crash).

Colonel Stapp, and air force physician decided
that the assumptions were not not valid and

proposed to determine the effects of high
accelerations on the body.

A rocket sled was designed to accelerate up to
40gs (40 times the felt force of gravity)

Stapp had himself launched down the track and
a video of the procedure taken.




Acceleration Practice

* In 1954, America's original Rocketman, Col. John Paul Stapp, attained a then-world record
land speed of 632 mph, going from a standstill to a speed faster than a .45 bullet in 5.0
seconds on an especially-designed rocket sled, and then screeched to a dead stop 1n 1.4
seconds, sustaining more than 40g's of force, all in the interest of safety.

* There are TWO accelerations in this problem calculate the acceleration both when
(a) He speeds up from 0 to 632 mph in 5.0 s.
(b) He slows down from 632 mph to 0 in 1.4 s.

Calculate the two accelerations, in ms?. Put these in gs (1g=10ms?).  Which one is larger?




Equations ot Motion

We have then established the 3
foundational relationships on which
motion is based:

Position 1s defined as a displacement
from an initial position.

Velocity is defined as the rate of
change of displacement in time.
Acceleration 1s defined as the rate of
change of velocity in time.

From these we can produce our kinematic
equations after a little dertvation and under a
very specific condition: acceleration must be
constant

Firstly remember our first principles

v=xdf—xli /tlf —tli v=Ax/At and a
=wvlf-vii/tif —tli o= Av/At




Kinematic Equation for Velocity

* Given that we know a = vdf —vdi /tlf —tli |, and, if we let the initial
time be 0 we can simply call &/ —¢#L7 7, the time of interest, thena = vlf

- —vlil /t.

* Then we can multiply by 7and get o = vdf —wvli. At this point if we want
an equation for the final velocity, given the initial velocity, a constant
acceleration, and time, we have

Vf:Vi+at

our velocity equation in terms of time and acceleration.




Kinematic Equations for Position

Firstly we know by the first principles that x; = x, + vt. This is the starting point for our displacement equation if we have
no acceleration.

Now, if we know that our displacement x = x; — x; and that, for a constant acceleration, the velocity can be calculated by
taking an average of the first and last velocity for that period, then the average velocity is ¥ =wdf +vdi /2

Then substitute to get the equation for average position: x, = x, + [df +2di /2 |t

Now if we substitute our velocity equation earlier v, = v; + at into this equation we obtain
X, = x, + [vdi+at+ vii /2]t

We can then simplify this equation to produce

x; = x; + vl t + atf2 /2

This is our general Displacement/Position equation for a uniform acceleration.




Time Independent Velocity Equation

Now that we have our equations for position and velocity let us perform an algebraic manipulation to get a shortcut
equation for velocity if we don’t have time:

Start with x, = x, + vtand v, = v, + at;  Now solve the velocity equation for time: t = vdf —vii /a

Now substitute this value of t into our position equation x; = x; + ¥t

Then x, = x, H[pdf +vii /2] [Vif —vii /a]

From this we can use algebra to manipulate the equation into the following form
(xe—x)2a = (Wf +vli)(wlf —vii)

If we foil this right side we find that we have a difference of perfect squares and the cross terms cancel to produce
X —x)2a = vf2-vli?

We can then solve this equation for the final velocity to obtain our equation for velocity without needing time.

v? = v? + 2a(x;— x,)




4 Kinematic Equations

* Then we have produced our 4 major kinematic equations

Average Displacement: x, = x, + vt ; v=vli+vif /2

Displacement: x, = x. + »f t + atl2 /2

Velocity (with time): v, = v, + at

Velocity (timeless): vi# = vi2 + 2a(x, — x;)




Falling Objects

* As has been discussed before and in previous examples, our kinematic equations require constant acceleration.

* The most common case for this is for falling objects. A falling object (or object thrown directly up) has only the force of
gravity causing it to accelerate.

* The acceleration due to gravity at the Earth’s surface is so common we call it g and g= 9.8ms™ towards the ground.

* Then our kinematic equations for falling objects take on the form
vi=yit vt so=vli+vif/2;
Ye=y; + vdit- gtT2 /2

vé = vi?=2g(y;—yy)




Plotting the Trajectory of a Falling Object

*  Consider the displacement N Velocity Time PlOtI%fSE%lIllmﬁng @E‘Elph for Falhng Ob]ect
of a dropped object, shown ) 0 ® 05 1 0 ey e g2 25 3 35
by the figures and graph > ° . o5 |e 1 15 2 2.5 3 3.5 gua
> - -
* Using the information o 10 N
provided find the equation N\ = o
which generates this graph. ® % G °
NS R N ® o
* What initial information is s -15 >; & o 3
needed or assumed? = g 25 .
R LS °
N g -20 =10 -
* Using what you know about < 8 = N
the relationships between = -35 °

N
un
[ J
L J

acceleration, velocity, and \ 40
position, what should the
graph of velocity look like?
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Plotting the Trajectory of an Object Thrown
Straight Up

Previously we worked with the case that
the initial velocity of the object was 0.

If we now give the object some initial
velocity in the positive direction, describe
the arrow diagram for motion. Estimate
the trajectory.

Now let’s use a specific example

For a ball launched straight up from the
ground at 15ms™ list our knowns:

AR
ViZD
a=7

Let us generate the table of values we need
to plot the trajectory, if we record the
position every 0.2seconds.

What function will give us this data easily?

Time (s) |Position (m)
0 0.0
0.2 2.8
0.4 5.2
0.6 2
0.8 8.9
1 10.1
1.2 10.9
1.4 11.4
1.6 RN
1.8 11.1
2 10.4
2.2 9.3
2.4 7.8
2.6 5.9
2.8 3.6
3 0.9

14.0

—_
52
S

—_
<
)

6.0

Position in Y (m)

4.0

2.0

0.0

°
0 0.5

Trajectory
o *|% o
P ®
®
®
o
o
®
R AN R R R

Time (s)




Terminal Velocity and Air Resistance

Generally we try to ignore air resistance, because air resistance is an external force
which causes acceleration to change and invalidates our kinematic equations.

As an object falls and gains velocity the friction between the object and the air
increases (air is a fluid and resists motion through it).

This is known as Drag or Air resistance and is & ” then as the object falls it
experiences greater resistance to its motion and slows.

When F,,, = F, i\, the forces balance and the object no longer accelerates, thus its
velocity has becomeé constant.

This velocity 1s known as the Terminal Velocity of the object.




Relative Velocity and Vectors

* Up until now we have restricted our discussion of kinematics to a single object moving in 1-D.

* However, objects are frequently moving in at least two spatial dimensions (including time in each) and
there are often more than one object involved in the situation.

* Ex: cars in traffic. If you have two cars moving at different velocities then they are both moving with
a certain velocity compated to a petson at rest, that is what we mean when we say that our choice of
reference points or inertial frames is important. If car 1 has velocity 50mph down the street and car 2
has velocity 35mph in the same direction, then how fast is car 1 going compared to car 2?

* This process is known as finding relative velocity and for 2 vectors A and B
Wik Vs Wy

* Try the same situation only car 1 is moving 50mph; 0° while car 2 has velocity 35mph; 270°. Use
vector subtraction to find the relative velocity. (Draw the vector diagram!)




The diagram below shows a boat that is about to cross a river in a direction perpendicular to the bank at a
speed of 0.8ms™ . The current flows at 0.6ms™ in the direction shown.

Bank

—

0.8ms™
06ms’— p T s

" Oee -

Bank

The magnitude of the displacement of the boat 5 seconds after leaving the bank is

A

B
C.
D

3t.

Practice
A raindrop falling through air reaches a terminal velocity before hitting the grovad. At terminal velocity,
the frictional force on the raindrop i3

Az
less than the weight of the raindrop.
greater than the weight of the raindrop.
equal to the weight of the raindrop.

The graph shows the variation with time ¢ of the velocity v of an object.

N4

Which one of the following graphs best represents the variation with time t of the acceleration a of the
object?

A ball, initially at rest, takes time ¢ to fall through a vertical distance h. If air resistance is ignored, the A at B a
time taken for the ball to fall from rest through a vertical distance 9h is




Kinematics in 2-D (Projectile Motion)

* One of the most simple cases of objects moving in 2-D i1s the case of a

- projectile.
* Projectile motion: the motion of an object which has been given an 1nitial
velocity and 1s subsequently under no other influence than gravity.

e A projectile then has motion in X and Y axis. It is important to remember
how to use our vector knowledge to separate the motion of a projectile into
its independent X and Y motions.




Compare the Ball Dropped and Rolled oft a Table

* | To make the situation clear let us compare these two scenarios. Remember the 1-D motion of a dropped ball eatlier:

Ball Dropped Ball Rolled off Table

§=0 ® x=0, y=0; v,=0 Vy:O; a,=0,a =-g

6 =5\ x=0, y= —gtlZ 12 /2 ; vi.=0 V=8t ) o X=V.t,, y= —gtlZ 12 /2 ; vi.=0 v, =8t
a,=0,a=-g a,=0,a=-¢g
. ts =1 © XZO: yE _gt‘l3 rz /2 ) Vx:O Vy:_gtS > ts = () YX:VX'[3 s _gt‘lg 7‘2 /2 3 VXZO Vy:—gt3;

t, =0 ® x=0,y=0;v,=0v=0;2.=0,a=-g

a,=0,a=-g a,=0,2,=-g
t, =1.50 x=0, y= —gtl4 12 /2 NoRUAESION £, =15 o EREHN —gl'\l‘l- 12 /2 ; v, =0 v, =-gty;
aXZO, ayz—g aX:O’ ay:_g

X=V ts , = —gtlS 12 /2 NE SNSRI

= INARUINS _gt‘lS 12 /2 5v,=0 Vy—8ts 5 ts =2 e a,=0,a,=-g
NSNS
t, =2.50 x=0,y= _gt‘l6 12 /2 s V=0 v =gt 5 tg =2.5 Py X=V, t,, y= —gl'\l6 12 /2 RIS RN

asliva <o

ashase




Separation of Components and Vector Form
ot Motion Equations

Then the usefulness of vectors is made apparent. In order to do 2-D kinematics we only
have to do 1-D kinematics twice. All of our methods we previously used still work, we just
have to apply them to the x and y vector components. Then we can write our equations for
displacement, velocity and acceleration as 2-D vectors with their components being the
displacement and velocity equations we previously derived:

Displacement: d=(x,y ); d =(xi + vlix t yi + viiyt — gt12 /2 )

Velocity: v=(wlx ,vly ), v=(viix, viiy — gt)

Acceleration: @ =(alx ,aly )= (0,—g)




Kinematic Equations for Projectiles

This allows us to resolve our
kinematic equations into their
components.

This table is from Giancoli and
you should become
comfortable working with
these equations and
understanding when to apply
them.

Bring your computers
tomorrow!!

The subscript O means “at ¢ = 0.7

TABLE 3—-1 General Kinematic Equations for Constant Acceleration
in Two Dimensions

x component (horizontal) ¥y component (vertical)
Vy = Uy + axt (Eq.2—-11a) vy = Vyo t+ ayt
X = xg + Uyol + Ya,t? (Eq.2—-11b) Y = Yo + vyt + 3ayt?
vE = V%0 + 2a,(x — xp) (Eq.2—-11¢) vy, = v30 + 2a,(y — o)
We can simplify Eqgs.2—11 to use for projectile motion because we canset a, = O.
See Table 3—2, which assumes y is positive upward, so a, = —g = —9.80 m/s>.

TABLE 3—-2 Kinematic Equations for Projectile Motion

(v positive upward; a, = 0, a, = —g = —9.80 m/s%)
Horizontal Motion Vertical Motion"
(ay = 0, wy = constant) (ay = —g = constant)
VUVx — Uxo (Eq. 2—1 la) v_v = vv‘,'() - gt
X = xqg + wxol (Eq.2—-11b) Y = Yo + Uyl — %gtz
(Eq.2—11¢) vy = v30 — 28(¥ — o)

T If y is taken positive downward, the minus ( — ) signs in front of g become + signs.




Describing Projectile Motion Graphically

As we previously showed, projectile motion shares many similarities to motion of objects falling or thrown straight up, with the exception that they also
include a horizontal component. Graphically then you can plot the motion of a projectile using an X(t) and Y (t) plot.

*  For a projectile with an initial velocity vector 247 = 20ms!; 30° let us determine what our displacement and velocity equations should look like in x and y
respectively, generate their t tables using those equations, and then graph them in time. It is useful here to resolve the initial velocity into its components.

X Equations Time (s) X(m)  Y(m) N .
x, = xi + viix 00 00 00 Object Motion in X Object motion in Y
t DL A o0
= 7 : - . = =050 e
le—vllx 0.6 92 6.0 H 30.0 t 2 40 ° S @
X Eduations Y T R N 20 o o
(D] 2 0
S ARV RN s RN . S
IR 0 vily t g 12 184 84 %.4 10.0 ° L %ﬂ.‘ ?8 S 3
: : S 4 [ ] SNy
L12 /2 T N RS A =R A Q00 e 3
viy=wvliy - gt 16 245] 8 GOV NN N GO\ SN E NN NN SRR N\
=-g ;2 232 Zz Time (s) Time (s)
vify:=vily?-2g(yy ——




Dertving the Trajectory Equation

UF to now we have been observing the behavior of a projectile as the components of its flight in time. But we experience projectile motion more commonly as spatially 2-D motion (think about the arc of
a football), not the individual X and Y motions in time.

Then we want to derive an equation for the motion in Y as a function of X. If we wanted to, we could simply generate our displacement vector using @ =(xi + wdix t yi + vliy t — g£12 /2 ) for the
given span of time we care about and plot these values. But that takes two steps, generating x(t) and y(t) and then plotting them.

Instead, we want to use x as an independent vatiable and see how y changes, with a single equation.
Let’s start with solving x(t) for t. x, = xi + »déx t;

x,—x, = vix t;

¢=xf-xi/vdix now substitute this into y; for t.

ye=yi + iyt — gt12 /25 y.=yi + iy [xf-xi/viix | — g[xf-xi/viix |12 /2

Now let us simplify this equation, first we’ll assume that x; =0 (we don’t care where the projectile was in x before it started flying away from us) then remember that v, = v; sin(©) and v,. = v, cos(©) and
that sin/cos is equivalent to the tan(©) then )

y(®) =y; + tan(O)(x) —g() 12 /2[vdi cos(8)]T2

By doing this, we traded needing information on time for needing information about only the initial velocity vector. We don’t have to build x(t) and y(t) and plot them against each other, but only the initial
condition of the launch and then we can let x vary as we please and we’ll be able to determine how the projectile will move in y.




Graphing the Trajectory of a Projectile

e Let us use the same information as in our previous example. The
projectile was launched at 20ms! at 30° from the ground. Then let us
generate our y(x) function.

2-D Trajectory of a Projectile

* v, =20cos(30° = 17.3ms™; X -
m m
* vy = 20cos(30°) = 10ms; ( ) ( ) 6 y = -0.0164x> + 0.58x - 9E-15
°  if we launch from the ground then y; = 0. Then our function looks like 0 0 5 P o
< y(x) =y, + tan(@)(x) —g) 12 /2[viicos(8)]T2 5 2.49075 /g . .
© y(x) = tan(30°)(x) — g(¥) 12 /2[20c05(30°)] 12 10 4.163 Pt & : X
© y(x)=.58(x) - 4.9(x) 12 /[17.3]12 15  5.01675 g 3
(] Y .

°  If we want to determine how far the projectile will travel in x we can 20 5.052 Q

solve this quadratic equation and determine the zeros or roots. o 2

. 25 426875 2

°*  Remember that quad form is x = -b + V4712 —4ac /2a then our A 1

trajectory has terms A = - 4.9 /[17.3]72 ; B = 0.58; and C = 0. Find 30 2.667 o 3 3

the zeros. ®

¢

®  Once that is known let’s create a t-table using values from initial to final 35 0.24675 &

position in x by 5s. 1 0 5 10 15 20 25 30 35 40

X Displacement (m)




Deriving the Level Range Equation

It’s useful to be able to find our maximum height for a projectile either by solving for the position in y for which v, is zero or by completing the square for the vertex of cither the y(t) or
y(x) position functions.

But we’d also like to quickly determine the maximum range or distance in x for a projectile. In order to do this let’s first recall the condition for a projectile to remain in the air: y > 0. Then
the locations where y = 0 are the locations where the projectile has stopped traveling.

If the displacement equation in y is y; = yi + wdiy t — g€T12 /2 and we fire from level ground (assume y, = 0) then the range is the location in x for the time t we get from solving y(t) for
the roots.

In other words first let 0 = wdiy t — g€12 /2 be the condition to be in the air. We can use the quadratic equation but, thanks to our C term being 0 we have a shortcut
0=t(diy — gt/2); then t =0 and 0 = iy — g£/2 are our roots. Solve for t.

gt/2 = viiy; t=2wvliy/g; Now we can substitute this value of t into the equation for x(t) and remember that x; is 0.

Thenx,=x/ + wdix t, x,= viix 2viiy /g ]

This is then éhe Range equation in its most basic form. It is frequently beneficial to re-write this equation in terms of the initial velocity vector though. Remember that v;, = v, sin(©) and
Vi, = Vi cos(0) X

R=wlix 2viliy /g ] R =2vliT2 sin(@)cos(8) /g By using the trig identity 2sin(X)cos(X)=sin(2X) we atrive at our final range equation
R= vlil2 sin(28)/g




Cannon Example and IB Practice

Which one of the following 15 a true staternent concerning the vertical

* PRACTICE: A cannon fires a projectﬂe with a muzzle component of the velocity and the acceleration of a projectile when it
velocity of 56 ms™ at an angle of inclination of 15°. et dam i e e e rden g e i
Vertical component of velocity Acceleration
° (a) What ate 2, and »,? (remember that in IB terms thisis 7, & mazirnum zero
and %y> B. maximum g
S ) 3 C. Zero ZEero
* (b) What are the tailored equations of motion?
D. ZEro g

e (C) When will the ball reach its maximum helghtD A stone is thrown at an angle to the horizontal. Ignoring

. \ air resistance, the hornizontal component of the mitial
2 d HOW fal' from the mU.ZZlC Wlll the baﬂ be When lt rCaChCS velo Cl Ofthe stone determines tie Value Uf
ty

the height of the muzzle at the end of its trajectory? A range only.
* (e) Sketch the following graphs: B.  maximum height only.
a vs. t, vyVS.t vovs.t xvst yvs.t and y(x) C.  range and maximum height.

D.  range and time of flight.




More IB Sample QQuestions

A stone 15 thrown horizontally from the top of a vertical ) 2
cliff of height 33 m as shownybelow. 3 {c) Calculate the distance of the stone from the base of the chiff
AT when it reaches sealevel.
18ms™

&

o

L)

sealevel

The initial horizontal velocity of the stone is 18 m 57! (d) Calculate the angle that the velocity makes with the surface of the
and air resistance may be assumed to be negligible. sea.

(a)  State values for the honzontal and for the vertical acceleration

of the stone.
Hori al el SN & stone is projected horizontally from the top of a ciff Neglecting air resistance, which
OrZ 0N aaC el At Oa R R S R S e oz of the following correctly describes what happens to the horizontal component of
welocity and to the vertical component of velocity?
AT T R TM - 1 €71 o R N R S A R A T Horizontal component of velocity Vertical component of velocity
R J o D I
(b)  Determine the time taken for the stone to reach sealevel SRR SR
B. Decreases Constant
C. Constant Constant
D. Constant Increases




Even More IB Test Questions

X ) . A4 ball 15 kicked at : ; )
A ball is projected from ground level with a speed of 28 m s at angle thth;: hzﬁ;milal_ ! (a) Using the diagram determine, for the ball
an angle of 30° to the horizontal as shown below. The diagram shows " i t (1)  the horizontal component of the initial velocity.
the position of the ball + A1
SRR every 0.50 s. f 25
" wall |—H}3 £ 20 ¥ «——ajir Using the diagram deterrmine, for the ball

30° 2 (it) the vertical component of the initial veloct
— ARt

16m g

8 10 * e 0000 008000800000 Re N s s RE e RN Te0sea e s essannseainnesnusnnnnanssanasnssssssohoos NG
There is awall of height / at a distance of 16 m from the point g {a}| Using the diagram deterrnine, for the ball
of projection of the ball. Air resistance is negligible. The acceleration of free 3 (if) the magnitude of the displacement after 3.0/s.
(a) Calculate the initial magnitudes of fall s g= 10m 572 Air
(1)  the horizontal velocity of the ball; resgtace may e & 10 20 30 40

neglected.

Gi) thevertical velocity oftheball.

horizontal displacement / m

(b) Tﬂ'ile hz:llll just passes over the wall. Determine the maximum height of for the ball if air resistance were not negligible.
e wall.




Section 2.2: Dynamics

Force and Free Body Diagrams
Recommended Practice Giancoli Chp 4
Questions: 2, 3,9, 13, 17
Problemsa 253,56, 93 116, 192527, 32: 41,4552 58, 64




Section 2 Objectives

Core Principles Apphcatlons and skaills:

Representing forces as vectors
* Mass as a property of matter b 5

¢ Sketching and interpreting free-body diagrams
- *  Obyects as point particles * Describing the consequences of Newton’s first law for translational
* Free-body diagrams equilibrium

¢ Using Newton’s second law quantitatively and qualitatively

* Identifying force pairs in the context of Newton’s third law

* Newton’s laws of motion *  Solving problems involving forces and determining resultant force
*  Describing solid friction (static and dynamic) by coetficients of

* Translational equilibrium

*  Solid friction

friction
Motion in Circles and Centripetal Forces *  Understand centripetal acceleration and how to apply dynamics to
° Gravitational Force and Satellites rotating systems and forces keeping objects in Uniform Circular

Motion
* Define the gravitational force and understand how it applies to
objects in orbit.




ToK and Aims

Theory of knowledge:

Classical physics believed that the whole of the future of the universe could be predicted from knowledge of
the present state. To what extent can knowledge of the present give us knowledge of the future?

Aims:

* Aims 2 and 3: Newton’s work is often described by the quote from a letter he wrote to his rival, Robert
Hooke, which states: “What Descartes did was a good step. You have added much [in] several ways. If I have
seen a little further it is by standing on the shoulders of Giants.” This quote is also inspired, this time by
writers who had been using versions of it for at least 500 years before Newton’s time.

Aim 6: experiments could include (but are not limited to): verification of Newton’s second law; investigating
forces in equilibrium; determination of the effects of friction.




Dynamics

Study of Force

Essential idea: Classical physics requires a force to change
a state of motion, as suggested by Newton in his laws
of motion.

Nature of science: (1) Using mathematics: Isaac Newton
provided the basis for much of our understanding of
forces and motion by formalizing the previous work of
scientists through the application of mathematics by
inventing calculus to assist with this. (2) Intuition: The
tale of the falling apple describes simply one of the
many flashes of intuition that went into the publication

of Phﬂosophlae Naturalis Principia Mathematica in
1687.

Utilization:
*  Motion of charged particles in fields (see Physics sub-
topics 5.4, 6.1, 11.1, 12.2)

*  Simple Machines and Force multipliers

* Application of friction in circular motion (see Physics
sub-topic 6.7)

* Biomechanics (see Sports, exercise and health science S
sub-topic 4.3)

*  Communications Satellites and the motion of planets




What is force?

Force: defined as a push or pull in a certain direction. Force 1s a vector quantity and results from the product of
mass and acceleration (we’ll discuss this more latet) F=ma. Then the units for force are kgm which have been

abbreviated by the synthetic unit Newton (N).

Acceleration Mass
* As previously discussed, acceleration is the rate of change of ® Mass is the inertial property of matter.
S 3 & prop
velocity.

* Massive objects resist change to their motions, which means it requires
It is also then the second derivative of position/displacement a greater force to accelerate them.

(a rate of a rate). . . . .
*  You can observe this by attempting to move 2 objects, your pencil and

Acceleration is a vector quantity where the direction 1s the table. Moving one with your finger is easy, the other exceedingly
reflected in the change in velocity. difficult.

® Mass is a scalar quantity

Common Forces: Gravity, Tension, Friction, Normal, and Centripetal

We commonly refer to the force of gravity at the Earth’s surface as “weight” and has the very specific value of mg or the mass of the object times the
acceleration due to gravity at the Earth’s sutface 9.8 or 10ms=,

Tension: is the force distributed along a rope or rigid line. Tension in a line is the same anywhere on the rope and requires a counter force or anchor to bring
the line to tautness, therefore tension is always a pull.

Friction: is the force which opposes motion along a surface or through a fluid. This is one of the most common forces and always acts in the direction of —
velocity, it is also parallel to the contact surface.

Normal force: refers to the force perpendicular to the surface of contact between two objects. (Normal means perpendicular or at 90°)

o T T P e v "



Newton’s First L.aw

Galileo was actually the first to suggest this. He observed that an object in motion will naturally remain in motion at a
constant velocity until something outside of that object acted on it.

You can simulate this with a steel ball on a hard surface or an air hockey table in either case, moving the object requires
some input of force but once applied the object is free to move and will do so at constant velocity until some unbalanced
force acts.

Newton’s First Law: A body continues in its state of rest or uniform velocity as long as no net force acts on it. AKA Law
of Inertia

Inertial Reference Frames: classical mechanics are based upon the assumption that objects share a fixed reference frame on
which no external forces are acting on the system. This is not always true:

Ex: when you are in a car and the car accelerates you and the car share a reference and both accelerate in the same
direction. The cup of scalding hot coffee you placed on the dash moments prior does not always share this and slides
towards you. In this case you and the car share an inertial reference (you both have the same velocity at all times then the
reference frame consisting of all things moving with shared velocity of the car are an inertial reference frame).




Newton’s Second Law

If an object will move constantly when in motion then what will change that motion?

When the velocity of an object changes, then it experiences an acceleration, when a mass accelerates it
experiences a Net Force or a force which has not been offset by any other (remember, forces are
vectors)

How much acceleration an object experiences is directly proportional to the force applied (F O a ).
Forces are consequently also proportional to the mass of the object being accelerated (# & m).

These relationships lead Issac Newton to suppose that the acceleration of an object, for a given force,
was inversely proportional to its mass @ & 1/m.

Newton’s 24 Taw: The acceleration of an object is directly proportional to the net fotce acting on it
and 1s inversely proportional to its mass. The direction of the acceleration 1s equal to the direction of




Newton’s Third Law

Often we see interactions between more than one object. Generally, an object moves and experiences force because another object
exerts a force on it. However, when one object interacts with the other, the first is never unchanged.

Ex: a hammer hits a nail and drives it into a surface. The hammer exerts a force on the nail and pushes the nail into the substrate, but
the hammer also comes to a stop.

Newton’s Third L.aw: Whenever one object exerts a force on a second object, the second exerts an equal force in the opposite direction
on the first.

It can sometimes be confusing to work with such force pairs because you must keep track of the forces applied both by the first on the
second and the second on the first when determining motion of the system.

One way to keep things clear is by being careful to use subscripts to keep track:

Ex: a person walking works by the person applying force to the ground. The E)erson moves forward because the ground applies a force
back on the person. Then the force applied on the ground by the person (£ 4G/P) is equal to the force on the person by the ground (#
LPG), but in the opposite direction. Then we can write this force pair as

FIGP = -FIPC




Free Body Diagram

* In order to solve problems involving Newton’s 2™ law we need to have a way to determine which forces may or may not be in balance.
(remember F NN 2 fF =mda ).

* The best way to do this is by treating the object as a point mass (assuming all the mass is consisting of a single point) and therefore draw
the object as a small box or dot. Then we draw all the forces acting on that object as vector arrows with their origins at the point mass.
This diagram of forces is called a Free Body Diagram (FBD)

* Ex: Determine all the forces acting on a box resting on 21qiglletop. Then draw a FBD for the book

Fmegl

* Ex: Draw the FBD for the book if it is being pulled horizontally to the right by a string across a table with friction. Now for a box pulled

0° angle with respect to the table FNI F
F
_-4@ I &




Applying Newton’s Laws

N AN Object Motion in X o N
* Ex: When we worked with ideal projectiles we noted that the AN R Object motion in Y
limiting factor for the flight of the projectile was the motion in y, £ NS X A
NN g el
use Newton’s 1°" law to explain this. £ 200 SRR Eon e -
o
E ® ® N g ®
o Y 9 00 @
A 00@ & 00 0.5 1.0 1.5 2.0
‘ 0.0 O3RN0 1.5 20 A 3
* Ex: A book with mass 2.5kg rests on a tabletop. How much force Time (s) Time (5)
. . . . . F 00k agains e
must be applied to cause it to accelerate at 2ms2? If it slides with a | e
) X reaction pair F R
velocity after the push of 2ms™! to a stop after traveling 0.75m, what C |*w=mg 5> Faspiea
. N : AN
is the force friction applies to the book to stop it: F vtteaging e o~ — ro---
X, = x; = 0.75
floor v, = 2ms’! v = Oms!
* Ex: A 5kg box rests on a table. If a rope anchored to the box is

pulled with a force of 25N; 20° what is the horizontal acceleration Earth TW'L“’:‘“‘g
(assume no friction)? What is the normal force?

FBD IFN jF
| GFTX }

m——




Problem with Tension and Connected Masses

* As previously mentioned tension is a force which is created when a force is applied to a flexible cord. If the cord has a
negligible mass compared to the forces being applied to it (an assumption) then the force is transmitted unchanged
throughout the length of the cord. This is because m = 0 and F=ma is zero when m=0.

* Then the forces pulling on either end of the cord must sum to zero (F and —F.)

Ex: For 2 masses connected by a cord with the rightmost mass being pulled by a force, Draw the FBD for BOTH masses

Given the information below, calculate the acceleration of each box and the tension in the cord connecting each box
(assume the connecting cord remains taut and of fixed length).

F, otiea = 60N
— applied
M, = 15kg M, = 101

S For M, and M, mi2 alx =Flapplied FIT=ml2 alx
27‘[’\[‘;{ — m\ll llj(T)r—NET and a_is the same, then N m\[l alx
g =N X = FIT=Flapplied AT
Flapplied — —mdl adx mi2 alx -mil alx =15kg(2.4msT
FIT For M, =Flapplied —2 )=36/N
— ' - For M, FIT=ml2 alx -

QTEFIY =md2 alx - Flapplied /(

Jry N 7~ 4 nTrT /7



Elevator Problems (Atwood Machines)

When a mass is connected to another over a pulley a system of hanging masses is created whose gravitational forces offset. This is due to the ability of a cable to
supply tension to both masses and the same direction. This principle is used to minimize the strength of a motor needed to operate an elevator system.

Ex: Consider an elevator (m; = 1150kg) and its counterweight (m- = 1000kg) suspended as shown in the diagram. If there is no motor and the brakes release in
what direction will the elevator and counterweight move? Given what you know about systems of masses connected by a cable calculate a) acceleration of the
elevator b) tension in the cable

For my,
el fe YTEFLy =mlE
i e aly =FIT — —mdE aly -mlF g= miC aly
- @t
d] i —miE aly-FIT

mg —mlE g

Fr.=F;

mifE aly-miCaly -mif g
mic g

a = acceleration ‘ ng

FIT -—miE

aly -miE g aly-g(miE—miC)/(miE +

miC) - g(11504g

: Form.c.. ..... » _1000kg)/(1150kg
alv =FIlF —




Tension as a Force Multiplier

There is another method to utilize tension to multiply the amount of force you must input into a system compared to
the force you can exert on an object. This method takes advantage of an anchor, pulleys, and the fact that tension is
uniform along the length of a cable and has equal but opposite forces at the ends.

Block and Tackle
By running a cable over a fixed pulley through a movable pulley 27\ Fl y =ma J y =
(or multiple pulleys) you can create a system which uses a fixed 0=/F171

= +/AU72 —mg

anchor and tension to move far heavier loads than possible \
i3 Try yourself: Double tackle, use the same analysis as

0=Fy + Fp,-mg

unassisted. Ex: Gun tackle, using the provided diagrams, draw the free in the previous problem to determine the MA Of_ this
Common set ups: body diagram for the mass being lifted and calculate the me= F, + F, system. How much force would need to be applied to
> ) i P
mechanical advantage of this system. (note MA= mgT") el

FBD mg = 2F;

s o

l va=mg/FIT =mg/
mg

Tackle Taokle Tackle Tackle

g T






















Section 2.5: Work and Energy

Conservation of Energy and the Energy of Motion/Position




ection 2.4: Momentum an
Impulse

Changes in Energy in Time and Collisions




Section 4 Objectives

Core Principles

Newton’s second law expressed in
terms of rate of change of
momentum

Impulse and force — time graphs

Conservation of linear momentum

Applications and skills:

Elastic collisions, inelastic collisions .

and explosions

Applying conservation of momentum in simple isolated
systems including (but not limited to) collisions, explosions,
ofr water jets

Using Newton’s second law quantitatively and qualitatively
in cases where mass 1s not constant

Sketching and interpreting force — time graphs
Determining impulse in various contexts including (but not
limited to) car safety and sports

Qualitatively and quantitatively comparing situations
involving elastic collisions, inelastic collisions and
explosions




ToK and Aims

Theory of knowledge:
Do conservation laws restrict or enable further development in physics?
Aims:

* Aim 3: conservation laws in science disciplines have played a major role in outlining the limits within which
scientific theories are developed

* Aim 6: experiments could include (but are not limited to): analysis of collisions with respect to energy

transfer; impulse investigations to determine velocity, force, time, or mass; determination of amount of
transformed energy 1n inelastic collisions

Aim 7: technology has allowed for more accurate and precise measurements of force and momentum,
including video analysis of real-life collisions and modelling/simulations of molecular collisions




Momentum and Impulse

Study of Momentum

Students should be aware that F' = 74 is the equivalent of
F = Ap / At only when mass is constant

Solving simultaneous equations involving conservation of
momentum and energy in collisions will not be required

Calculations relating to collisions and explosions will be
restricted to one-dimensional situations

A comparison between energy involved in inelastic
collisions (in which kinetic energy is not conserved) and
the conservation of (total) energy should be made

Utilization:

Jet engines and rockets

Particle theory and collisions (see Physics sub-topic 3.7)

Students should be aware that F' = a is the equivalent of F =
Ap / At only when mass is constant

Solving simultaneous equations involving conservation of
momentum and energy in collisions will not be required
Calculations relating to collisions and explosions will be restricted
to one-dimensional situations

A comparison between energy involved in inelastic collisions (in
which kinetic energy is not conserved) and the conservation of
(total) energy should be made




Momentum

Linear momentum refers to the quantity described by the mass of an object multiplied by its velocity and is denoted with the symbol (p). Then the units for linear
momentum are kgmsl. As was the case for Force being a vector due to the product of a scalar and a vector, so too is momentum a vector.

Momentum can be described in terms of Newton’s 27 Law via the following derivation

Remember that @ = Av/A¢ , and note that the delta refers to change from an initial value.

If NII is ), =ma then we can rewrite this as } T+ =mAv/A¢ Data booklet reference:
Then the sum of forces acting on an object equals the product of its mass and its change in velocity. « p=mw
p = my;, then a change in momentum in time is Ap/At = mvlf —muvli /At | W Ap / A/

If mass remains constant then we can rewrite this as Ap = m(vlf —vii) /At and remember that A v = (vdf —vii)
\ * Ex=p*/ (2m)

Then this becomes Ap/At = mAv/At = Y T&F or, written more familiarly as
*Impulse = FAr= A

X = Ap/At  the sum of forces acting on an object equals its change in momentum in time. In general, mass can change (such as is the case fé)r rockets) and so when we
use this equation in the general case we have to consider Ap = mv;— my; .

Ex: What is the linear momentum of a 4.0-gram NATO SS 109 bullet traveling at 950 ms1?

Ex: A 6-kg object increases its speed from 5 m s-1 to 25 m s-1 in 30 s. What is the net force acting on it?




Momentum and Kinetic Energy

*  Given the relationship between force and momentum it should come as no surprise then that momentum and kinetic energy are related. We can write the
kinetic energy equation in terms of momentum via the following rearrangement: PRACTICE: What is the kinetic

energy of a 4.0-gram NATO SS 109
SRR p =NV andKE =N Vrz /2 then first let us solve the momentum equation for velocitbullet traveling at 950 m/s and having

a momentum of 3.8 kgms!?

U— p / 7N ; substitute this into the equation for kinetic energy and simplify SOLUTION: You can wotk from
scratch using Ei. = (1/2)mw? or you

- xe=m[p/m [T2 /2 -mpT2 /2mT2 ; can use Ey = p2/ (21).

*] et’s use the new formula...

* ThenKE = p 7\2 /2 771 (Now verify this equation using dimensional analysis) E =p%/ (2m)

* If KE can be written in terms of momentum and there is a conservation of energy law = 3.82 / (2x0.004)
it should come as no surprise that there exists a law for the conservation of momentum N
in a system. = 1800 J

*  This conservation of momentum is best explained by considering the momentum form of NII. If no external force acts on the objects in a system (that is,

moving objects with momentum interacting) then Z, 7\ - A p / A L =0 ot the total momentum is constant in time.
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Collisions and Momentum

* A collision is an event in which a relatively strong force acts on two or more bodies for a relatively short
time.

Ex: The Meteor Crater in the state of Arizona was the first
crater to be identified as an impact crater.

The object which hit was estimated to have released
3.8Megatons of energy. Assuming that all of the kinetic energy
of the meteor was released, and the estimated velocity of the
meteor is accurate (15km/s) estimate the mass of the meteor.

What then would have been the momentum of the meteor?

Given the extreme forces acting during the duration of this collision then how significant were the external
forces of this impact? Is it safe to assume that momentum could be conserved during the collision?




Observing Collisions

* A collision between bodies has 3 distinct phases: Before, During, After. It is important to keep track
of the momentum for EACH object during the collision in order to determine the forces and changes

in momentum for the objects. Durin
‘Before I Ab
myv .= m,v N R
Pii N8 b1 AR ForcA‘ Rac Graph for 2 Body Collision 25T N Por — My Ve

—®—TForcel —®—Force2

1.8 2

Time (s)




Conservation of Momentum

Collisions can be defined as closed systems, with system boundaries consisting of the objects involved in the collision only. This is
useful as it allows us to derive a conservation law from the fact that the sum of external forces on the system is zero. This law is based
on NII and NIII and can be derived in several ways.

Let object A have momentum 22 JA=milA v .A initially and object B have initial momentum 22 JB=mlBv.F

Then the total momentum of the closed system is the vector sum 22 \LS'J/S lem=p A + 4 B =mlAvIA+miB v
B

Following the collision each object has a momentum 27 \LS:)/S rem f , P \ZA f 7' ~+ % \ZB 7' — m\lA 1% \ZA 7' Sis
MBS ER

Then the change in momentum A P system =p IsystemT —p Isystem = mdA vIAT +miB v IF
N mdAvIA+miB viR)

Now remember that 2 F = Ap Lf}’.f tem / AL

system

mlelB’) an A*le+m Ble)




Conservation Examples

*  Ex: A 10,000kg railroad car A is traveling with a velocity of 24ms™ to the east and strikes a car B whose mass is the same but is at rest. If
the cars lock together then what is the common velocity of the cars afterwards?
| OERTINSS m\lA v ‘lA = m\lB myvy — (mA ot mB)V

viB =mlAviA
= mAVA/(mA + mR)- 10,000kg-24ms—1/(20,000kg) =12ms"

Pgna = (M + mp)v’

L Ex?calcula the velocity of recoil for a Skg rifle firing a .020kg bullet with a speed of 620ms. Using this information then estimate the

felt recoil olrrmce) and compare shooting a rifle with a long barrel against shooting the same rifle but with a cut off barrel.

The system for a rifle and bullet 2‘7‘ = A Y/ /A {  What

consists of both objects having no AN ARSI .

momentum (v=0). Following the Pinitial = m‘l/l) & JA) A mlelB v lgr m\lﬁ v \lﬁ information mlght R need to

ignition of the primer the bullet is viB =0 y Aen gssume that the rifle recoil lasts

launched from the muzzle by a v \llll) = —m\lb) v JBT' / A R

column of exploding gases. The 0 ' N SN

bullet leaves moving in one direction Pfinal = =mIRvIR'+ m LBnlR F = 5kg2.48ms™! } 0.30s™" = 40N

but the rifle must then move in the viF r What about reducing the barrel?

opposite to conserve momentum. IR =—0.02 Okg62 0772sT What does the butt pad do?
B — . Pinitial ™ Pfinal — i /Sk g = -2.48ms™! P—

v vl R DR S LT B



Impulse

In the last example we discussed the effect of time over which a momentum changes as being related to force. Consider the

force/time graph for the two objects during a collision:

We have shown previously that NII can be used to
describe a change in momentum via , F-At = Ap.
Recall that this is similar to another situation
(calculating displacement as Ax = v+ A)

Then likewise we can calculate the change in
momentum by finding the area under a force time
curve.

Impulse : this is defined as the change in momentum
calculated from F -At. Impulse has the symbol | (not
to be confused with the unit | for Joules in energy).

Force Time Graph for 2 Body Collision

30 —8—TForcel —@—Force2

Force (N)

Time (s)

Ex: Estimate the impulse on object 1 during this collision.
What do you notice about the impulse on 1 and 27




More Practice for Impulse

EXAMPLE: A 0.140-kg baseball comes in at 40.0 m/s, strikes the bat, and goes back out at 50.0 m/s. If the collision lasts 1.20 ms (this is a
typical value):

a) find the impulse imparted to the ball from the bat during the collision

b) find the average force which acted on the ball during the collision with the bat

c) estimate the impulse from the provided table of time and force values

, Force Time Curve of Baseball
Time (s) Force (N)
0 0
20000 :
0.0002 0 19,500
a) SOLUTION: e p 18000
J= Ap = mv — mv 0.0006 27 16000
= 0.140kg(50 - 40)ms™ = 12.6kgms™ oot 1300 o
\ & RS ' Z. 12000
0.0012 5300
b) SOLUTION: 0.0014 19500 o 10000
) : 0.0016 6200 £ 8000
SN NSNS 0.0018 3200 6000
J N AP N F At 0.002 950 4000
- 0.0022 45
12.6kgms‘1 = F'.OO].ZS 0.0024 10 2000 0
- 0.0026 0 OROTO=OS O O 00000
F =12.6% gms -1 / 0.0012 0.0028 0 0  0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002 0.0022 0.0024 0.0026 0.0028 0.003
10,500N — . Time (s)




Momentum and Rockets

*  When a rocket is launched, fuel is burned rapidly which produces a steady supply of exhaust gases moving at very high velocity. Then the
expelled gas has a tremendous momentum. In order for the momentum of the rocket body and gas system to be conserved, the rocket must also

be given an equal and opposite momentum.

Draw the rocket/exhaust system including the FBD for the rocket. What is NII for this situation? _ F

How does this system differ from previous examples in this unit? LR

Ex: a 25,000kg rocket burns fuel at a rate of 275kgs! and produces exhaust gases moving at 1250ms™.
Determine the thrust of this rocket.

Bonus: At home determine the final velocity of the rocket if it holds 10,000kg of fuel when all the fuel is consumed (burnout). Show your work and
include a description of the solution. +15points on momentum exam
Ex: How does a jet engine produce thrust?

Air is pulled into the intake with a certain velocity and then heated and accelerated by the turbine
fans. It is ejected at a much higher velocity which generates a powerful thrust due to the change

in air momentum produces by the engine.




Elastic and Inelastic Collisions

* Flastic collisions defined as collisions in which all momentum is conserved

- and kinetic energy is conserved as well
® Thenm v, + m v, =myv’, + m v, and KE,  +Ke, = KE’  + KE’,




