
Chapter 1: Measurement 
and Uncertainty 

Section 1:  Observation, Describing quantities, and Estimation 

Section 2: Measurement uncertainty, Error propagation, and 
Analytical methods 



Section 1 Objectives 

 Core Principles 

•  Physics and Observation 

•  Fundamental and derived SI units  

•  Scientific notation and metric multipliers  

•  Significant figures  

•  Orders of  magnitude  

•  Estimation  

Applications and skills:  
•   Using SI units in the correct format for all 

required measurements, final answers to 
calculations and presentation of  raw and 
processed data  

•  Using scientific notation and metric multipliers  
•   Quoting and comparing ratios, values and 

approximations to the nearest order of  
magnitude  

•  Estimating quantities to an appropriate number 
of  significant figures  

 



ToK and Aims 

Theory of  knowledge:  

What has influenced the common language used in science? To what extent does having a common standard 
approach to measurement facilitate the sharing of  knowledge in physics? 

Utilization:  

 This topic is able to be integrated into any topic taught at the start of  the course and is important to all topics  

Students studying more than one group 4 subject will be able to use these skills across all subjects  

Aims:  

Aim 2 and 3: this is an essential area of  knowledge that allows scientists to collaborate across the globe  

Aim 4 and 5: a common approach to expressing results of  analysis, evaluation and synthesis of  scientific 
information enables greater sharing and collaboration  



What is Physics? 

Science 
•  Science is the attempt to 

understand and describe the 
universe.  (Physics ≈ Grammar, 
Math ≈ Language).  

Physics 
•  Physics may be generally described 

as the study of  forces and energy, 
and matter’s reaction to these in 
space and time. 



Fundamental Forces in Physics 

4 Forces Strongest to Weakest 
•  Strong Nuclear Force 

•  Electromagnetic 

•  Weak Nuclear Force 

•  Gravity 



Observation and Measurement 
(1)  Common terminology: Since the 18th century, scientists have sought to establish common systems of  measurements to facilitate international 

collaboration across science disciplines and ensure replication and comparability of  experiments.   

(2)  Definition of  physical quantities.  Physics must carefully define the various aspects of  the universe we wish to quantify. Then we need units or standards 
by which to measure these quantities.  There are seven fundamental quantities for which we have standard units: 

•  Mass measured in kilograms (kg)—defines the amount of  matter or inertial quantity of  matter. 

•  Length measured in meters (m)—defines the space in which some event occurs or the distance/size of  some object/space 

•  Time measured in seconds (s)—defines the duration over which an event takes place 

•  Temperature measured in Kelvin degrees (K)—defines the average kinetic energy of  the molecules of  a substance 

•  Electric Charge measured in Coulombs (C)—defines the amount of  electric charge a particle or object possesses 

•  Luminosity measured in Candelas (cd)—defines the relative brightness of  an object 

•  Amount of  substance measured in moles (mol)—defines how many atoms of  a substance exist for a given material 

(3)  Derived Units:  Any unit created by algebraic combinations of  these fundamental units creates a derived unit.  Ex velocity = distance/time (m/s) 

(4)  Certainty: Although scientists are perceived as working towards finding “exact” answers, there is unavoidable uncertainty in any measurement.  No 
measurement is infinitely precise therefore all quantities have error associated with them. 

Essential idea:  

•   Since 1948, the Système International d’Unités (SI) has been used as the preferred language of  science and technology across the globe and reflects 
current best measurement practice. 



Dimensional Analysis 

•  By analyzing the algebra performed to generate a quantity and comparing the known unit for the quantity to 
the units obtained by that algebra we can confirm the correctness of  our equations.  

•  Note: IB standard for metric units is to place all units in the numerator and to use negative exponents, rather 
than the fractional  notation.  Examples of  both are provided below.  

Ex:  force has units of  kgms-2 (or 𝑘𝑔𝑚/𝑠↑2  ) then if  we have an equation 𝐹= 𝑚𝑎𝑠𝑠× 𝑙𝑒𝑛𝑔𝑡ℎ↑2 /𝑡𝑖𝑚𝑒↑2    is 
this the correct equation for calculating force? 

Ex: Suppose the rate of  a car is 12m/s, and it travels for 5 seconds.  What is the distance traveled in that time by 
the car? (note that rate refers to velocity in ms-1) 

PRACTICE: Decide if  the formulas are dimensionally consistent.  The information you need is that v is 
measured in m/s, a is in m/s2, x is in m and t is in s. 

 (a) v = at2   (b) v2 = 3ax   (c) x = at2 

 



Unit Conversions and Powers of  10 

•  Since the United States (and England) use a different set of  units for their measurement systems it is frequently necessary to convert between 
these units and the metric system.  It is also necessary to perform unit conversions between different units when they are expressed in very 
large or very small units of  time.   

•  Particularly, time is measured as base seconds but 1min=60seconds and 1hr=60mins and 1day=24hrs and 1year=365days, etc. 

Then make the following conversion:   

Ex: how many minutes are in 1 year? 

Ex: how many seconds are in the average human lifespan? (approx. 75yrs) 

•  Physics encompasses a vast range of  values though.  Distances on earth are commonly measured using meters or, at most, units which consist 
of  1000m, the kilometer.  In space however, distances are so large (the distance between stars for example) that it is near meaningless to use 
meters to describe these distances so the distance light travels in a year the lightyear is used instead.   

Ex: If  light moves at 3(108)ms-1 calculate how many meters are in 1 lightyear (ly). 

•  In order to make writing and working with these numbers more efficient a base 10 prefix system has been developed to make writing and 
converting between units more concise.  Each prefix is an abbreviation for a power of  10 multiplier. 



Prefix System 

Power of  10   Prefix Name     Symbol 
10 -12   pico   p   
10 -9    nano   n   
10 -6    micro   µ   
10 -3    milli   m   
10 -2    centi   c   
10 3    kilo    k   
10 6    mega   M   
10 9    giga    G   
10 12   tera    T   

Ex: 9,000,000m = 9(106)m = 9Mm 
Ex: 0.000000136s = 1.36(10-7)s = 1.36(10-6)(10-1)s=.136µs   
OR 
0.000000136s = 1.36(10-7)s = 1.36(10-9)(102)s = 136(10-9)s = 136ns 
 
Memorize this table! You will be responsible for these prefixes on 
quizzes and exams. 
 
Then we can convert between these prefixes by division and 
multiplication by powers of  10. 
Ex: Convert 25mm into cm.   
Ex: Convert 2Gbytes into kbytes 
Homework Question: Why is the base unit for mass referred to as 
the kilogram, instead of  the gram and what problems does this 
introduce?  Be prepared to answer for a bellwork quiz. 
 



Scientific Notation 

•  Given the very large and very small values in physics it is also useful to 
represent numbers as their significant figures multiplied by their powers of  10.   

•  This practice greatly helps to keep track of  significant figures throughout a 
calculation and makes the mathematics easier for working with extremely large 
and small quantities in a problem. 

•  Form: A(10B) where A is some number coefficient with a certain number of  
significant figures and B is an integer. 

•  Note, do not write your scientific notation using Ax10B.   

Ex: Put the number 345,000,000mol into scientific notation, then use the proper 
prefix. 

Ex: Put the number 100400m into scientific notation, then use the proper prefix. 



Significant Figures and Measuring Devices 

•  Error in measurement is expected because of  the 
imperfect nature of  our measuring devices. 

•  Significant figures are the reasonable number of  digits 
that a measurement or calculation should have.  

•  Ex: A typical meter stick has marks at every millimeter   
(10 -3 m or 1/1000 m). Thus the best measurement you 
can get from a typical meter stick is to the nearest mm. 

•  Such is always true of  analog devices or devices whose 
measurements depend on a physical observation or 
marking which is manually read. 

•  A digital measuring device, on the other hand, is only 
“good” to the least significant digit’s place. 

How long is this line?   

 

 

What precision do we have using this scale?  Then how many 
significant figures can our measurement have? 

What is the number of  significant figures on this digital 
multimeter? 

 

0 1 

1 cm 



Rules for Significant Figures 

   



Orders of  Magnitude and Estimation 

•  As previously discussed there is tremendous difference in the size of  
quantities observed in the universe.   
 Mass of  universe     10 

50  kg 
 Diameter of  universe    10 

25  m  
 Diameter of  galaxy    10 

21  m  
 Planck Length     10-35   m 
 Speed of  light     10 

8  m s-1  
 Diameter of  atom     10 

-10  m 
 Diameter of  nucleus    10 

-15  m 
 Diameter of  quark     10 

-18  m 
 Mass of  proton      10 

-27  kg 
 Mass of  quark      10 

-30  kg  
 Mass of  electron      10 

-31  kg 
  

Ex: Given that the smallest length in the universe is the Planck 
length of  10 

-35 meters and that the fastest speed in the universe 
is that of  light at 10 

8 meters per second, find the smallest time 
interval in the universe.   

Ex: Find the difference in order of  magnitude of  the mass of  the 
universe to the mass of  a quark.   

Ex: For nuclear diameter 10-15 and atomic diameter 10-10 answer 
the following:   



Uncertainty in Measurement 

•  Scientists aim towards designing experiments that can give a “true value” from their measurements, but due 
to the limited precision in measuring devices, they often quote their results with some form of  uncertainty. 

•  Uncertainties: “All scientific knowledge is uncertain. When the scientist tells you he does not know the 
answer, he is an ignorant man. When he tells you he has a hunch about how it is going to work, he is 
uncertain about it. When he is pretty sure of  how it is going to work, he still is in some doubt. And it is of  
paramount importance, in order to make progress, that we recognize this ignorance and this doubt. Because 
we have the doubt, we then propose looking in new directions for new ideas.”   

 – Feynman, Richard P. 1998. The Meaning of  It All: Thoughts of  a Citizen-Scientist.                               
 Reading, Massachusetts, USA. Perseus. P 13. 

•  “One aim of  the physical sciences has been to give an exact picture of  the material world. One achievement 
of  physics in the twentieth century has been to prove that this aim is unattainable.”  

 – Jacob Bronowski 

 

 

 



ToK and Aims 

Theory of  knowledge: To what extent can we, as scientists and individuals, ever be certain? 

Utilization:  

•  Students studying more than one group 4 subject will be able to use these skills across all 
subjects 

Aims:  

•  Aim 4: it is important that students see scientific errors and uncertainties not only as the range 
of  possible answers but as an integral part of  the scientific process  

•  Aim 9: the process of  using uncertainties in classical physics can be compared to the view of  
uncertainties in modern (and particularly quantum) physics 

  



Section 2 Objectives 

Core Principles  
•  Random and systematic 

errors  

•  Absolute, fractional and 
percentage uncertainties  

•  Error bars  

•  Uncertainty of  gradients 
and intercepts  

Applications and skills:  
• Explaining how random and systematic errors can be identified and 
reduced  
• Collecting data that include absolute and/or fractional uncertainties and 
stating these as an uncertainty range (expressed as: best estimate ± 
uncertainty range)  
• Propagating uncertainties through calculations involving addition, 
subtraction, multiplication, division and raising to a power  
• Determining the uncertainty in gradients and intercepts 



Data Book References  

Note: Analysis of  uncertainties will not be expected for trigonometric or 
logarithmic functions in examinations  

Data booklet reference: (grow comfortable using these data booklets for 
quick reference, you will have to use them during the IB exam) 

If  y = a ± b then Δy = Δa + Δb  

If  y = a · b / c then Δy / y = Δa / a + Δb / b + Δc / c  

If  y = a n then Δy / y = | n · Δa / a | 



Good Uncertainty Example 

•  Ex: Suppose Bob measures L = 11 mm ± 1 mm and Ann measures L = 12 mm ± 1 
mm with the ruler below.  Because we use a measuring device with a least increment 
of  1mm or 10-3m, we say the precision or uncertainty in our measurement is ± 1 
mm. 

  

•  Then Bob guarantees that the line falls between 10 mm and 12 mm. 
•  Ann guarantees it is between 11 mm and 13 mm. 

•  Both are absolutely correct. 

0 1 



Bad Uncertainty Example 

SOLUTION GIVEN: 
• 6.2 is the nearest reading. 
• The uncertainty is certainly less than 0.5. 

Problems:  What is wrong with this? 



Types of  Error 

Random 
•  Random error originates from 

imprecision of  measurement and 
observation of  measurement 

•  Compounded by rapidly 
fluctuating systems.  

•  Most commonly observed error 
in data. 

•  Random error is visualized by 
the error bars of  a scatter plot. 

•  Minimized by making repeated 
measures to find an average and 
its standard deviation. 

Systematic 
•  Systematic error originates from a 

baseline or calibration error.   

•  Often due to experimental set up 
or measurement device offset. 

•  More difficult to observe unless 
the observer has a very good 
model or verified data to compare 
results. 

•  Graphically can be observed in a 
consistently higher or lower trend 
line than your model function. 

•  Systematic error can be corrected 
for by using data normalization 
techniques 

y = 3.0102x + 0.3488 

y = 3.0102x + 5.3488 
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Precision v. Accuracy 

Accurate 
•  Refers to the closeness of  the data/result to the 

expected true value. 

Precise 
•  Refers to the closeness of  the experimental data to 

other data points within the sample. 

Ex: Dart board.  The objective is to throw 5 darts and hit a bullseye.  The results of  4 rounds are plotted below, 
discuss the accuracy v. precision of  each round and then relate to random v. systematic error. 

Trial 1 Trial 2 Trial 3 Trial 4 



Sample Questions 



Representing Uncertainty/Error 

•  3 main ways: Absolute uncertainty, fractional uncertainty, and percentage uncertainty 

•  Absolute error is the raw uncertainty or precision of  your measurement.  Ex: 15cm ± 2cm; 2cm is the 
absolute uncertainty.  The expected true value of  the measurement could be anywhere from13 to 17cm. If  
you are provided no knowledge of  your instrument but only some experimental data values you can 
determine the raw error by taking the range of  the data (the largest value –the smallest value)/2 . 

•  Fractional error is the ratio of  the absolute or raw error to the measurement. Ex: 15cm ± 2cm is the 
absolute error, then 2/15 =0.13 is the fractional uncertainty.  

•  Percent error is the fractional uncertainty represented as a percentage of  the measurement.  Ex: 15cm ± 
2cm is the raw error, 2/15 =0.13 is the fractional error, then 2/15 ×100%=13%  is the percent uncertainty 

ToK Question: why is the percent error useful compared to the other two? 

 



Error Propagation Calculations 

•  Error never decreases in a system.  When a formula involving arithmetic operations occurs on values with error that error will increase 
through the operation in a way described by the following formulas: 

If  y = a ± b then Δy = Δa + Δb  

If  y = a · b / c then Δy / y = Δa / a + Δb / b + Δc / c  

If  y = a n then Δy / y = | n · Δa / a | 

To find the uncertainty in a sum or difference you just add the uncertainties of  all the ingredients. 

To find the uncertainty in a product or quotient you just add the percentage or fractional uncertainties of  all the ingredients. 

Remember that exponents are merely a concise form of  multiplication then your formula is also a concise version of  the product uncertainty formula. 

Ex: If  A=3.5±0.5m;  B=6.2±0.6m;  C=10.1±1.5m;  D=5.5±0.2m, calculate the resulting value including uncertainty in raw, fractional, and percent 
forms for the resulting value using the formula provided above. 

1)  A+B-C   

2)  C·D÷B  

3)  A3 

4)  B-A·C2 



More Practice 
A 9.51 ± 0.15 meter rope ladder is hung from a             
roof  that is 12.56 ± 0.07 meters above the                   
ground. How far is the bottom of  the ladder                      
from  the ground? 

A car travels 64.7 ± 0.5 meters in 8.65 ± 0.05 seconds. What is its 
speed? 



Analytical Methods for Data 

Experimental rigor:  
•  IB has a requirement that when you conduct an experiment of  your own design, 

you must have five variations in your independent variable.   
•  And for each variation of  your independent variable you must conduct three trials 

to gather the values of  the dependent variable.  The three values for each 
dependent variable will then be averaged. 

•  Note that if  you need to employ statistical analysis on data such as standard 
deviation you must use no fewer than five trials and for using data comparisons 
which determine significant difference such as student’s t-tests, you must have no 
fewer than 10 trials.  



Analytics and Tables 
•This is a well designed table containing all of  the information and data points 
required by IB: 
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•  Data tables must record 
both raw and mean data. 

•  Data tables must have 
informative and 
descriptive column 
headers including units 
where necessary and 
uncertainty. 



Analytics and Tables Continued 

2 
= 2.0. 

In order to determine the 
uncertainty in the dependent 
variable we reproduce the first two 
rows of  the previous table: 
 
The uncertainty in the average 
height h was taken to be half  the 
largest range in the trial data, 
which is in the row for n = 2 
sheets:   53.4 - 49.6 

If  there is a necessary calculation performed on the raw data to produce your dependent variable (for instance if  
the dependent variable were to be potential energy for a ball, which was PE=m·g·h we would need the constant 
values for mass ± uncertainty in mass and gravity (assumed a constant 9.8).  Then we would have to use the 
fractional uncertainty formula to calculate our error through the calculation. 



Error bars go up 
2 and down 2 at 
each point. 

Analytics and Graphing 
When making a graph it is required that 
you plot the data as scatter points. 
 
You must also plot the error in the 
dependent variable using properly 
designed error bars.  Error can either be 
generated by using the range/2 formula or 
by more rigorous methods if  you have 
sufficient data. 
 
Lastly, if  possible you should have a trend 
line and a formula whose meaning is 
explicitly known. 
 
Golden rule: the fit line must pass 
through all error bars to be valid, 
as well as be to the lowest possible 
power. 



Analytics and Graphing Error in Slopes and Intercepts 
Uncertainty of  gradient and intercepts 
•To determine the uncertainty in the gradient and intercepts of  a best fit line we look 
only at the first and last error bars, as illustrated here: 

 mbest 
mmax 

mmin 

mbest ± Δm = mbest ± mmax - mmin 
2 

slope & 
uncertainty 

bbest 

bmax 

bmin 

bbest  ± Δb  =  bbest ± bmax - bmin 
2 

intercept & 
uncertainty 

Recall: y = mx + b 



Practice: Graphing Error in Slopes and Intercepts 
Calculate the error in the trend line slope and 
intercept using the provided formula and first/
last error bars. 
 
The minimum slope is calculated from the 
bottom of  the first bar to the top of  the last: 
What are these resulting values?  
 
Then calculate the resulting uncertainty in slope 
based on the data:  

Δm =  
 
Then the reported slope is  
-1.633±0.25  
 
Now do the same for the y intercept. 

                     Δb = 
 
Then the reported y-intercept is 
56.067±2 
 

 
 

mmax - mmin 
2 

bmax - bmin 
2 


