58. Calculate the equivalent resistance of the following compound circuit

59. Calculate the equivalent resistance R and the total current I

60. Calculate the equivalent resistance R and the total current I

61. Calculate the the total current I and total voltage V .

62. If $\mathrm{R}_{1}=\mathrm{R}_{2}$, calculate the $\mathrm{R}_{1}, \mathrm{I}_{2}$, and the total current I .

63. Calculate the equivalent resistance R and the total current I.

64. Calculate the the total current I , total voltage V and V_{2}.

65. Calculate the R_{2}, and I_{2}.

66. Calculate the $\mathrm{I}_{2}, \mathrm{R}_{3}$, the total current I .

67. Calculate the the total current I and total voltage V.

68. Use the diagram to calculate a) the total resistance in the circuit, b) the total current through the circuit, c) the total power the circuit consume, and d) the current through R_{2}. (where $\mathrm{R}_{1}=10 \Omega, \mathrm{R}_{2}=30 \Omega, \mathrm{R}_{3}=30 \Omega, \mathrm{R}_{4}=$ $15 \Omega, \mathrm{~V}=12 \mathrm{~V}$)

