Electric Charge Problems

1. Find the total positive charge of all the protons in 1.0 mol of water. [9.632 * $10^{\wedge} 5$ C]
2. Find the total positive charge of all the protons in 5 gm of water. [2.676x10^5]
3. What would be the net charge of 1.0 gram gold piece after removal of 1.0% of its electrons? [386.336 C]
4. A balloon, initially neutral, is rubbed with fur until it acquires a net charge of 0.60 nC . (a) Assuming that only electrons are transferred, were electrons removed from the balloon or added to it? (b)How many electrons were transferred? [3.7 * $\left.10^{\wedge} 9\right]$
5. A metallic sphere has a charge of +4.0 nC . A negatively charged rod has a charge of -6.0 nC . When the rod touches the sphere, 8.2×10^{9} electrons are transferred. What are the charges of the sphere and the rod now? [Sphere $=2.688 \mathrm{nC}$ and Rod=-4.688 nC]

Electric Force Problems

6. Two charges, 5 C and 15 C are separated by 10 cm . What is the force between them? $\left[6.75 \times 10^{\wedge} 13 \mathrm{~N}\right]$
7. Two charges, 5 C and 15 C are separated by some distance. Force between them is $6.75 \times 10^{\wedge} 13 \mathrm{~N}$. What is the distance between them in $\mathrm{cm} ?[10 \mathrm{~cm}]$
8. Two charges, one is 5 C and another is unknown but force between them is $6.75 \times 10^{\wedge} 13 \mathrm{~N}$ and they are separated by 10 cm . What is the other charge? [15 C]
9. If the electrical force of repulsion between two $1-\mathrm{C}$ charges is 10 N , how far apart are they? [30000 m]
10. If the electrical force of repulsion between two same amount of charges is 10 N , and they are 30000 m apart. What is the magnitude of each charge? [1C]
11. Two +1 C charges are separated by 30000 m , what is the magnitude of the force? [10 N]
12. A total charge of $7.50 \times 10^{-6} \mathrm{C}$ is distributed on two different small metal spheres. When the spheres are 6.00 cm apart, they each feel a repulsive force of 20.0 N. How much charge is on each sphere? [1.067 micro coulomb and]
13. 13. How many electrons must be removed from each of two $5.0-\mathrm{kg}$ copper spheres to make the electronic force of repulsion between them equal in magnitude to the gravitational attraction between them? [2.675*10^9]
1. 14. What is the ratio of the electric force to the gravitational force between a proton and an electron separated by $5.3 \times 10^{-11} \mathrm{~m}$ (the radius of a hydrogen atom)? [2.2911*10^39]
1. Three point charges are fixed in place in a right triangle. What is the electric force on the $5.0 \mu \mathrm{C}$ charge due to the other two charges? [74N]
2. 16. Find the force on $1 \mu \mathrm{C}$ charge? [64.0312 N]
1. Find the force on $-4 \mu \mathrm{C}$ charge?

2. Three charges $\mathrm{A}(4 \mu \mathrm{C}), \mathrm{B}(-6 \mu \mathrm{C})$ and $\mathrm{C}(2$ $\mu \mathrm{C}$) are placed at the vertices of a right angle triangle $\mathrm{ABC} . \mathrm{AC}=10 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$. Find net force on charge B due to C and A charges.

3. Three point charges are fixed at the corners of a right triangle. What is the electric force on the $+1.0-\mu \mathrm{C}$ charge due to the other two charges?
4. 3 charges, $1.0 \mu \mathrm{C}$ each, are placed in 3 corners of a square $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Calculate the charge located at point D so that the net force on charge at B will be zero. [- 2.83 micro Coulomb]
5. 3 charges, $1.0 \mu \mathrm{C}$ each, are located on three vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of an equilateral triangle with sides 2 cm each. Another charge \boldsymbol{q} is located at the mid point of the side BC. Calculate \boldsymbol{q} so that net force on the charge at A due to the charges at B, C and D is zero.

6. Two pith balls with the same mass $m=9.0 \times 10^{-8} \mathrm{~kg}$ and the same positive charge Q are suspended from the same point by insulating threads of length $L=0.98 \mathrm{~m}$. What is the charge Q ? Assume the angle between the thread θ is 30 degree [2.6 nC]

7. Three point charges are placed on the x-axis. A charge of $3.00 \mu \mathrm{C}$ is at the origin. A charge of $-5.00 \mu \mathrm{C}$ is at 20.0 cm , and a charge of $8.00 \mu \mathrm{C}$ is at 35.0 cm . What is the force on the charge at the origin? [1.615 N in +x direction]
8. Three point charges $1.0 \mu \mathrm{C}, 0.10 \mu \mathrm{C}$ and $10.0 \mu \mathrm{C}$ are placed on a straight line and net force on $0.10 \mu \mathrm{C}$ is zero. Find \boldsymbol{x} in cm . [9.4868 cm]

Electric Field Problems

25. Two point charges, $\mathrm{q}_{1}=+20.0 \mathrm{nC}$ and $\mathrm{q}_{2}=+10.0 \mathrm{nC}$, are located on the x -axis at $\mathrm{x}=0$ and $\mathrm{x}=1.00 \mathrm{~m}$, respectively. Where on the x -axis is the electric field will be zero? [0.585 m from +20 nC]
26. 23. Two point charges, $\mathrm{q}_{1}=-20.0 \mathrm{nC}$ and $\mathrm{q}_{2}=+10.0 \mathrm{nC}$, are located on the x -axis at $\mathrm{x}=0$ and $\mathrm{x}=1.00 \mathrm{~m}$, respectively. Where on the x -axis is the electric field will be zero? [2.4143 m from +10 nC]
1. 24. Two point charges, $\mathrm{q}_{1}=+20.0 \mathrm{nC}$ and $\mathrm{q}_{2}=-10.0 \mathrm{nC}$, are located on the x -axis at $\mathrm{x}=0$ and $\mathrm{x}=1.00 \mathrm{~m}$, respectively. Where on the x -axis is the electric field will be zero? [2.43 m from -10 nC charge]
1. Two equal charges, +10.0 nC each, are located on the x -axis at $\mathrm{x}=0$ and $\mathrm{x}=1.00$ m , respectively. What is the magnitude of electric field at the point $\mathrm{x}=0.50 \mathrm{~m}$? [0 N/C]
2. Positive point charges, $1 \mu \mathrm{C}$ each, are placed at three corners of a rectangle, as shown in the figure. (a) What is the electric field at the forth corner? [3.06* $10^{\wedge} 15$] (b) A small object with a charge of $+2.0 \mu \mathrm{C}$ is placed at the forth corner.
 What force acts on the object? [6.12×10^9 N]
3. Two equal charges $(\mathrm{Q}=+1.00 \mathrm{nC})$ are situated at the diagonal corners A and C of a square of side 1.0 m . What is the magnitude of the electric field at point D? [12.73 N/C]

4. 2 charges 5 nC and 10 nC are placed at A and B . Find a point C on AB such that electric field is zero at C . $\mathrm{AB}=2 \mathrm{~m}$ [zero electric field is 0.829 m far from 5 nC charge OR zero electric field is $2-0.829 \mathrm{~m}$ far from 10 nC charge]
5. 10 nC charge is located at point $\mathrm{A}(0,6 \mathrm{~cm})$. Calculate the x component of the electric field at the point $\mathrm{P}(6 \mathrm{~cm}, 0)[8829.01 \mathrm{~N} / \mathrm{C}]$
6. - 10 nC charge is located at $(0,0)$ point. Calculate the y component of electric field at point $\mathrm{P}(4 \mathrm{~cm}, 5 \mathrm{~cm})$. [-17157.72 N/C]
