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ConCepts

The complex motion o a rigid body can be analysed as a 

combination  o two types o motion:  translation  and rotation.  

Both these types o motion are studied separately in this study 

guide (pages 9  and 65) .

mg

A bottle thrown through the air  the centre o mass o the 

bottle ollows a path as predicted by projectile motion.  In 

addition the bottle rotates about one (or more)  axes.

Translational motion is described using displacements,  velocities 

and linear accelerations;  all these quantities apply to the centre 

of mass  o the object.  Rotational motion is described using 

angles (angular displacement) ,  angular velocities and angular 

accelerations;  all these quantities apply to circular motion about a 

given axis o rotation.

The concept o angular velocity,  ,  has already been introduced 

with the mechanics o circular motion (see page 66)  and is 

linked to the requency o rotation by the ollowing ormula:

requencyangular velocity

  =  2  f

Translational motion Rotational motion

Every particle in the object 

has the same instantaneous 

velocity

Every particle in the object 

moves in a circle around the 

same axis o rotation

Displacement,  s,  measured 

in m

Angular displacement,  ,  

measured in radians [rad]

Velocity,  v,  is  the rate o 

change o displacement 

measured in m s- 1

v =     
ds
 _ 

dt
  

Angular velocity,  ,  is  the 

rate o change o angle 

measured in rad s- 1

  =    
d
 _ 

dt
  

Acceleration,  a,  is  the rate o 

change o velocity measured 

in m s- 2

a  =     
dv
 _ 

dt
  

Angular acceleration,  ,  is  

the rate o change o angular 

velocity measured in rad s- 2

  =    
d
 _ 

dt
  

Comparison o linear and rotational motion

equations of uniform angular aCCeleration

The defnitions o average linear velocity and average linear 

acceleration can be rearranged to derive the constant acceleration 

equations (page 11 ) .  An equivalent rearrangement derives the 

equations o constant angular acceleration.

Translational motion Rotational motion

Displacement s

Initial velocity u

Final velocity v

Time taken t

Acceleration a

[constant]

Angular displacement  

Initial angular velocity 
i

Final angular velocity  
f

Time taken t

Angular acceleration 

[constant]

v =  u  +  at 
f
 =  

i
 +  t

s  =  ut +    
1
 _ 

2
   at2   =  

i
t +    

1
 _ 

2
   t2

v2  =  u2  +  2as 
f

2  =  
i

2  +  2

s  =     
(v +  u) t
 _ 

2
    =     

(
f
 +  

i
 ) t
 _ 

2
  

t  d   
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example: BiCyCle wheel

When a bicycle is  moving orward at constant velocity v,  the 

dierent points on the wheel each have dierent velocities.  

The motion o the wheel can be analysed as the addition o 

the translational and the rotational motion.

a)   Translational motion

The bicycle is  moving orward at velocity v so the 

wheels centre o mass has orward translational motion 

o velocity v.  All points on the wheels rim have a 

translational component orward at velocity v.

translational  component  of
velocity  

b)   Rotational motion

The wheel is  rotating around the central axis o rotation 

at a constant angular velocity .  All points on the wheels  

rim have a tangential component o velocity v (=  r)







tangential  
component of
velocity  

c)   Combined motion

The motion o the dierent points on the wheels  rim is 

the vector addition o the above two components:

Point  at  side  of  wheel  is  moving 

with  instantaneous velocity  of

2 ,  at  45 to  the horizontal 

Point  in  contact  with

ground  is  at  rest.

Instantaneous

velocity  is  zero

Point  at  top of wheel  is  

moving with  instantaneous 

velocity  of 2 ,  forward
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relationship Between linear and rotational 

quantities
When an object is just rotating about a fxed axis,  and there is no 

additional translational motion o the object,  all the individual 

particles that make up that object have dierent instantaneous 

values o linear displacement,  linear velocity and linear 

acceleration.  They do,  however,  all share the same instantaneous 

values o angular displacement,  angular velocity and angular 

acceleration.  The link between these values involves the distance 

rom the axis o rotation to the particle.

rigid  body
m2

r2

m1

V1

V1    V2

r1
V2,  instantaneous 
       velocity

instantaneous velocity

Rotation  about
axis.  Al l  particles
have same
instantaneous
angular velocity

particle  1

particle  2

axis
of rotation
( into the page)



a)  Displacements

Distance travelled 

on circular path

Angular displacement

Distance rom axis o 

rotation to particle

s  =  r

b)  Instantaneous velocities

Linear instantaneous 

velocity (along the 

tangent)

Angular velocity

Distance rom axis o 

rotation to particle

v =  r

c)  Accelerations 

 The total linear acceleration o any particle is  made up o 

two components:   

a)  The centripetal acceleration,  a
r
,  ( towards the axis 

o rotation  see page 65) ,  also known as the radial 

acceleration.    

Tangential velocity
Angular velocity

Distance rom axis o 

rotation to particle

a
r
 =    

v2

 _ 

r
    =  r2

Centripetal acceleration 

(along the radius)

b)  An additional tangential acceleration,  a
t
,  which results 

rom an angular acceleration taking place.   I   =  0,  then 

a
t
 =  0.

Angular acceleration

Distance rom axis o 

rotation to particle

a
t
 =  r

Instantaneous acceleration 

(along the tangent)

The total acceleration o the particle can be ound by vector 

addition o these two components:  a  =  r 
______
 4  +  2   

t     
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the moment of a forCe: the torque 
A particle is  in equilibrium i its acceleration is zero.   This occurs 

when the vector sum o all the external orces acting on the 

particle is  zero (see page 1 6) .   In this situation,  all the orces 

pass through a single point and sum to zero.   The orces on 

real objects do not always pass through the same point and can 

create a turning eect about a given axis.  The turning eect is  

called the moment of the force  or the torque.  The symbol or 

torque is the Greek uppercase letter gamma,  .  

The moment or torque   o a orce,  F about an axis is  defned as 

the product o the orce and the perpendicular distance rom 

the axis o rotation to the line o action o the orce.

  =  Fr

orcemoment or torque

perpendicular distance

  =  Fr sin 

axis  of

r

rotation

perpendicular

distance from O

to  l ine of action  of F

r

force F

O

l ine of action  of F





Note:

  The torque and energy are both measured in N m,  but only 

energy can also be expressed as joules.

  The direction o any torque is  clockwise or anticlockwise 

about the axis o rotation that is  being considered.  For the 

purposes o calculations,  this can be treated as a vector 

quantity with the direction o the torque vector considered 

to be along the axis o rotation.  In the example above,  the 

torque vector is  directed into the paper.  I the orce F was 

applied in the opposite direction,  the torque vector would be 

directed out o the paper.

Couples
A couple  is  a system o orces that has no resultant orce but 

which does produce a turning eect.   A common example is  

a pair o equal but anti-parallel orces acting with dierent 

points o application.   In this situation,  the resultant torque 

is the same about all axes drawn perpendicular to the plane 

defned by the orces.

arbitrary
axis

Torque of forces  = F(x  + d)  - Fx
= Fd  clockwise

This  result  is  independent  of position  of axis,  O

F

O

F

d

x

rotational and translational equiliBrium
I a resultant orce acts on an object then it must accelerate 

(page 1 7) .   When there is  no resultant orce acting on an 

object then we know it to be in translational equilibrium 

(page 1 6)  as this means its  acceleration must be zero.   

Similarly,  i there is a resultant torque acting on an object then 

it must have an angular acceleration,  .   Thus an object will 

be in rotational equilibrium  only i the vector sum o all the 

external torques acting on the object is  zero.

I an object is  not moving and not rotating then it is  said to be 

in static equilibrium.  This must mean that the object is  in 

both rotational and translational equilibrium.

For rotational equilibrium:  

  =  0       =  0

In 2D  problems ( in the x-y  plane) ,  it is  sufcient to show 

that there is no torque about any one  axis perpendicular 

to the plane being considered (parallel to the z-axis) .  In 3D 

problems,  three axis directions (x,  y  and z)  would need to be 

considered.

For translational equilibrium:  

a  =  0     F =  0

In 2D  problems,  it is  sufcient to show that there is  no 

resultant orce in two  dierent directions.  In 3D problems 

three axis directions (x,  y  and z)  would need to be considered.

5 N
axis  into
page

3  N f N

3  m 2  m 2  m

In the example above,  or rotational equilibrium:  

f =  2 .25  N

t     b
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Centre of gravity
The eect o gravity on all the dierent parts o the 

object can be treated as a single orce acting at the 

objects centre of gravity.  

I an object is o uniorm shape and density,  the centre 

o gravity will be in the middle o the object.  I the 

object is not uniorm,  then fnding its position is not 

trivial  it is possible or an objects centre o gravity to 

be outside the object.  Experimentally,  i you suspend 

an object rom a point and it is ree to move,  then the 

centre o gravity will always end up below the point o 

suspension.

example 1

When  a  ca r  goes  a cross  a  b r idge,  the  fo rces  ( on  the  bridge )  a re

as  shown .

Ta king m omen ts  abou t  r igh t-ha nd  suppor t :

c lockwise  m oment  =  a n t ic lo ckwise  m oment

            (R1    2 0  m )  =  (Wb   10  m )  +  (Wc   4  m )

Taking m omen ts  abou t  left-ha nd  suppor t :

            (R2    2 0  m )  =  (Wb   10  m )  +  (Wc   16  m )

Also ,  s in ce  bridge  is  no t  a cce lera t ing:  

                      R1  +  R2  =  Wb +  Wc

10  m 6 m 4 m
R2R1

Wb,  weight  of bridge

Wc,  weight  of car

When solving problems to do with rotational equilibrium 

remember:

  All orces at an axis have zero moment about that axis.

  You do not have to choose the pivot as the axis about which 

you calculate torques,  but it is  oten the simplest thing to do 

( or the reason above) .

  You need to remember the sense (clockwise or anticlockwise) .

  When solving two-dimensional problems it is sufcient to show 

that an object is in rotational equilibrium about any ONE axis.

  Newtons laws still apply.  Oten an object is  in rotational 

AND in translational equilibrium.  This can provide a simple 

way o fnding an unknown orce.

  The weight o an object can be considered to be concentrated 

at its centre o gravity.

  I the problem only involves three non-parallel orces,   the 

lines o action o all the orces must meet at a single point in 

order to be in rotational equilibrium.

R

W

P

3  orces must meet at a point i in equilibrium

equbu s

(a)  plank balances if pivot is  in middle

(b)  plank rotates clockwise if pivot is  to the left

(c)  plank rotates anticlockwise if pivot is  to the right

W

W

W

There is  no  moment  about  

the centre  of gravity.

centre of gravity

example 2
A ladder o length 5 .0 m leans against a smooth wall (no 

riction)  at an angle o 30  to the vertical.

a)  Explain why the ladder can only stay in place i there is  

riction between the ground and the ladder.

b)   What is  the minimum coefcient o static raction 

between the ladder and the ground or the ladder to 

stay in place?

The reaction  from the wal l ,

Rw and  the ladders  weight

meet  at  point  P.  For 

equi l ibrium the force from

the ground,  Rg must  a lso

pass through this point

( for zero torque about  P) .  

 Rg  is  as shown  and  has

a  horizontal  component

( i.e.  friction  must be acting)   

(a)

h

x

W

wal l

ground

Q

Rw

Rg

P

5 m

60

30

Equil ibrium conditions:-

Ff sR

(b)RH

Rg Rv W = Rv

RH

using

= Rw

Rwh = Wxmoments

about  Q

(     )

(       )

RH sRv

s 

s     =

&
Rw

W

x

h

2.5  cos 60

5.0  sin  60

s  0.29

1 2

3

1

2

3
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newtons seCond law  definition  of moment of inertia

O

xed  axis  of
rotation

particle

angular
acceleration

rigid  body

tangential
acceleration
at

F



Newtons second law as applied to one particle in a rigid body

Newtons second law applies to every particle that makes up a large 

object and must also apply i the object is undergoing rotational 

motion.  In the diagram above,  the object is made up o lots o 

small particles each with a mass m.  F is the tangential component o 

the resultant orce that acts on one particle.  The other component,  

the radial component,  cannot produce angular acceleration so it is  

not included.  For this particle we can apply Newtons second law:

F =  m a
t
 =  mr

so torque   =  (mr)r =  mr2  

Similar equations can be created or all the particles that make 

up the object and summed together:

   =    mr2  

or  
ext
 =   mr2   (1 )

Note that:

  Newtons third law applies and,  when summing up all the 

torques,  the internal torques (which result rom the internal 

orces between particles)  must sum to zero.   Only the 

external torques are let.

  Every particle in the object has the same angular 

acceleration,  .

The moment o inertial,  I,  o an object about a particular axis is  

defned by the summation below:

I =   mr2
moment o inertia

mass o an individual 

particle in the object

the distance o the particle 

rom the axis or rotation

Note that moment o inertia,  I,  is

  A scalar quantity

  Measured in kg m2  (not kg m- 2 )

  Dependent on:

 The mass o the object

 The way this mass is  distributed

 The axis o rotation being considered.   

Using this defnition,  equation 1  becomes:

  =  I 

resultant external 

torque in N m

moment o inertia in kg m2

angular acceleration in rad  s  
- 2
 

This is  Newtons second law or rotational motion and can be 

compared to F =  ma

n c     

moments of inertia for different oBjeCts

Equations or moments o inertia in dierent situations do not need to be memorized.

Object Axis of  

rotation

moment of 

inertia

Object Axis of  

rotation

moment of 

inertia

thin  ring ( simple  wheel)

m

r

 

    

   

through centre,  

perpendicular to 

plane

mr2

Sphere

through centre   
2
 
_
 

5
    mr2

   

th in  ring

m

r

    

   

through a 

diameter
  
1
 
_
 

2
    mr2

   

 

d isc and  cyl inder ( sol id  ywheel)

m

r

   

through centre,  

perpendicular to 

plane

  
1
 
_
 

2
    mr2 Rectangular lamina

l

h

Through the 

centre of mass,  

perpendicular to 

the plane of the 

lamina

m (   l2  + h2

 
_ 
12

  )  

   

 

    

th in  rod,  length  d

m

d

through centre,  

perpendicular 

to rod

  
1
 
_
 

12
    md2

example
A torque o 30 N m acts on a wheel with moment o inertia  

600 kg m2 .  The wheel starts o at rest.  

a)   What angular acceleration is produced?

b)   The wheel has a radius o 40 cm.   Ater 1 .5  minutes:

   i.  what is  the angular velocity o the wheel?

ii.  how ast is  a point on the rim moving?

a)     =  I       =      _ 
I
    =     30 _ 

600
    =  5 .0   1 0- 2  rad s- 2

b)     i.    =  t =  5 .0   1 0- 2
   90 =  4.5  rad s- 1

ii.  v =  r   =  0.4   4.5  =  1 .8  m s- 1
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energy of rotational motion
Energy considerations oten provide simple solutions to 

complicated problems.  When a torque acts on an object,  work is 

done.   In the absence o any resistive torque,  the work done on 

the object will be stored as rotational kinetic energy.

axis of rotation

F

P

F



r

Calculation o work done by a torque

In the situation above,  a orce F is  applied and the object 

rotates.  As a result,  an angular displacement o   occurs.  The 

work done,  W,  is  calculated as shown below:

W =  F   (distance along arc)  =  F   r  =  

Using  =  I   we know that W =  I

We can apply the constant angular acceleration equation to 

substitute or :


f

2  =  
i

2  +  2

 W =  I (     f

2

 _ 
2
   -   


i

2

 ___ 
2
   )   =    

1
 _ 

2
   I

f

2  -    
1
 _ 

2
   I

i

2

This means that we have an equation or rotational KE:  

 E 
 K  

ro t
 
  =    

1
 _ 

2
   I 2

Work done by the torque acting on object =  change in 

rotational KE o object

The total KE is equal to the sum o translational KE and the 

rotational KE:

Total KE =  translational KE +  rotational KE

Total KE =    
1
 _ 

2
   Mv2  +    

1
 _ 

2
   I2

angular momentum
For a single particle

The linear momentum,  p,  o a particle o mass m  which has a 

tangential speed v is  m  v.

The angular momentum,  L,  is  defned as the moment o the 

linear momentum about the axis o rotation

Angular momentum,  L  =  (mv)r =  (mr)r =  (mr2 )

For a larger object

The angular momentum L  o an object about an axis o 

rotation is defned as 

Angular momentum,  L  =  (mr2 )

L  =  I

Note that total angular momentum,  L,  is:

  a vector ( in the same way that a torque is  considered to be 

a vector or calculations)

  measured in kg m2  s- 1  or N m s

  dependent on all rotations taking place.   For example,  the 

total angular momentum o a planet orbiting a star would 

involve:

 the spinning o the planet about an axis through the 

planets  centre o mass and

 the orbital angular momentum about an axis through 

the star.

Conservation  of angular momentum
In exactly the same way that Newtons laws can be applied to 

linear motion to derive:

  the concept o the impulse o a orce

  the relationship between impulse and change in 

momentum 

  the law o conservation o linear momentum,  

then Newtons laws can be applied to angular situations  

to derive:

  The concept o the angular impulse:  

Angular impulse is  the product o torque and the time or 

which the torque acts:

angular impulse =  t

I the torque varies with time then the total angular 

impulse given to an object can be estimated rom the area 

under the graph showing the variation o torque with 

time.  This is analogous to estimating the total impulse 

given to an object as a result o a varying orce (see 

page 23) .

  The relationship between angular impulse and change in 

angular momentum:  

angular impulse applied to an object =  change o 

angular momentum experienced by the object

  The law o conservation o angular momentum.

The total angular momentum o a system remains constant 

provided no resultant external torque acts.

Examples:

a)   A skater who is spinning on a vertical axis down their 

body can reduce their moment o inertia by drawing in 

their arms.  This allows their mass to be redistributed so 

that the mass o the arms is no longer at a signifcant 

distance rom the axis o rotation thus reducing mr2 .

Extended  arms mean

larger  radius and  smal ler

velocity  of rotation.

Bringing in  her arms 

decreases her moment

of inertia  and  therefore

increases her rotational

velocity.

b)   The EarthMoon system produces tides in the oceans.  As 

a result o the relative movement o water,  riction exists 

between the oceans and Earth.  This provides a torque that 

acts to reduce the Earths spin on its own axis and thus 

reduces the Earths angular momentum.  The conservation 

o angular momentum means that there must be a 

corresponding increase in the orbital angular momentum 

o the EarthMoon system.  As a result,  the EarthMoon 

separation is  slowly increasing.

r  dc
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summary Comparison of equations of linear and rotational motion
Every equation for linear motion has a corresponding angular equivalent:

Linear motion Rotational motion

Physics principles A resultant external force on a point object 

causes acceleration.  The value of the 

acceleration is determined by the mass and 

the resultant force.

A resultant external torque on an extended object 

causes rotational acceleration.  The value of the 

angular acceleration is  determined by the moment 

of inertia and the resultant torque.

Newtons second law F =  m a   =  I 

Work done W =  F s W =   

Kinetic energy E
K
 =     1  _ 

2
    m v2  E 

 K  
r o t
 
  =    1  _ 

2
   I 2

Power P =  F v P =   

Momentum p  =  m v L  =  I 

Conservation of momentum The total linear momentum of a system 

remains constant provided no resultant 

external force acts.

The total angular momentum of a system remains 

constant provided no resultant external torque 

acts.

Symbols used Resultant force F

Mass m

Acceleration a

Displacement s

Velocity v

Linear momentum p

Resultant torque 

Moment of inertia I

Angular acceleration 

Angular displacement 

Angular velocity 

Angular momentum L

proBlem solving and graphiCal work
When analysing any rotational situation,  the simplest 

approach is to imagine the equivalent linear situation and use 

the appropriate equivalent relationships.

a)  Graph of angular displacement vs time

This graph is equivalent to a graph of linear displacement vs 

time.  In the linear situation,  the area under the graph does 

not represent any useful quantity and the gradient of the line 

at any instant is equal to the instantaneous velocity (see page 

10) .  Thus the gradient of an angular displacement vs 

time graph gives the instantaneous angular velocity.

b)  Graph of angular velocity vs time

This graph is equivalent to a graph of linear velocity vs 

time.  In the linear situation,  the area under the graph 

represents the distance gone and the gradient of the line at 

any instant is  equal to the instantaneous acceleration (see 

page 1 0) .  Thus the area under an angular velocity vs 

time graph gives the total angular displacement and 

the gradient of an angular velocity vs time graph 

gives the instantaneous angular acceleration.

c)  Graph of torque vs time

This graph is equivalent to a graph of force vs time.  In 

the linear situation,  the area under the graph represents 

the total impulse given to the object which is equal to the 

change of momentum of the object (see page 23) .  Thus 

the area under the torque vs time graph represents 

the total angular impulse given to the object which 

is equal to the change of angular momentum.

example
A solid cylinder,  initially at rest,  rolls down a 2 .0 m long slope 

of angle 30 as shown in the diagram below:  

2.0  m

30

The mass of the cylinder is m  and the radius of the cylinder is R.  

Calculate the velocity of the cylinder at the bottom of the slope.

Answer:  

Vertical height fallen by cylinder =  2 .0 sin30 =  1 .0  m

 PE lost =  mgh

 KE gained =    1  _ 
2
   mv2  +    1  _ 

2
   I2

 but I =    1  _ 
2
   mR2   (cylinder)  see page 1 56

 and   =    v _ 
R
  

   KE gained =     1  _ 
2
   mv2  +    1  _ 

2
      
mR2

 _ 
2
       v

2

 _ 
R2
  

 =     1  _ 
2
   mv2  +     1  _ 

4
   mv2

 =    3  _ 
4
   mv2

Conservation of energy

   mgh  =    3  _ 
4
   mv2

   v =   
____

 4  
gh
 _ 

3
    

 =    
___________

    
4   9.8    1 .0

  __ 
3
    

 =  3 .61  m s- 1

s   b
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definitions
Historically,  the study of the behaviour of ideal gases led to some very fundamental concepts that are applicable to many other 

situations.  These laws,  otherwise known as the laws of thermodynamics, provide the modern physicist with a set of very 

powerful intellectual tools.  

The terms used need to be explained.  

Thermodynamic 

system

Most of the time when studying the behaviour of an ideal gas in particular situations,  we focus on the  

macroscopic behaviour of the gas as a whole.  In terms of work and energy,  the gas can gain or lose 

thermal energy and it can do work or work can be done on it.  In this context,  the gas can be seen as a 

thermodynamic system.

The 

surroundings

If we are focusing our study on the behaviour of an ideal gas,  then everything else can be called 

its surroundings.  For example the expansion of a gas means that work is done by the gas on the 

surroundings (see below) .

Heat Q In this context heat refers to the transfer  

of a quantity of thermal energy between  

the system and its surroundings.   

This transfer must be as a result of a  

temperature difference.

Work W In this context,  work refers to the macroscopic transfer of energy.  For example

1.  work done =  force   distance

compression

F

F

 
When a gas is compressed,  work is done on the gas 

When a gas is  compressed,  the surroundings do 

work on it.  When a gas expands it does work on 

the surroundings.

2.  work done =  potential difference   current   time

Internal energy 

U (U =  change 

in internal 

energy)

The internal energy can be thought of as the energy held within a system.  It is  the sum of the PE due to 

the intermolecular forces and the kinetic energy due to the random motion of the molecules.  See  

page 26.  

This is  different to the total energy of  

the system,  which would also include  

the overall motion of the system and  

any PE due to external forces.

In thermodynamics,  it is  the changes  

in internal energy that are being  

considered.  If the internal energy of  

a gas is  increased,  then its temperature  

must increase.  A change of phase  

(e.g.  liquid   gas)  also involves a  

change of internal energy.

Internal energy 

of an ideal 

monatomic gas

The internal energy of an ideal gas depends only on temperature.   When the temperature of an ideal 

gas changes from T to (T +  T)  its internal energy changes from U to (U + U) .  The same U always 

produces the same T.  Since the temperature is related to the average kinetic energy per molecule (see 

page 30) ,   
__

 E
K
  =    3  __ 

2
   k

B
T =    3  __ 

2
     R __ 
N

A

   T,  the internal energy U,  is  the sum of the total random kinetic energies of the 

molecules:

U =  nN
A
  
__

 E
K
  =    

3
 
_ 
2
   nRT  [n  =  number of moles;  N

A
 = Avogadros constant]

The total energy of a system is  not the same as 

its internal energy

system
with

internal
energy  U

v
velocity  ( system a lso  has kinetic energy)

height  ( system a lso has 
gravitational  potentia l  energy)

h

thrmyamc ym a ccp

This is  just another 

example of work being 

done on the gas.

heater

power supply

HOT

HOT

thermal  energy  ow

thermal  energy  ow

thermal  
energy  
ow

COLDHOT
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work done during expansion  

at Constant pressure
Whenever a gas expands,  it is  doing 

work on its surroundings.  If the pressure 

of the gas is  changing all the time,  then 

calculating the amount of work done 

is complex.  This is  because we cannot 

assume a constant force in the equation 

of work done (work done =  force 

  distance) .  If the pressure changes 

then the force must also change.  If the 

pressure is  constant then the force is  

constant and we can calculate the  

work done.

constant  

pressure p

F

F

x

Work done W =  force   distance

 =  Fx 

Since pressure =    
force
 _ area  

 F =  pA

therefore

 W =  pAx

 but Ax =  V

 so work done =  pV 

So if a gas increases its volume (V  

is positive)  then the gas does work (W is  

positive)

w  by    l  

p V diagrams and work done
It is  often useful to represent the changes that happen to a gas during a 

thermodynamic process on a pV diagram.  An important reason for choosing to do this 

is  that the area under the graph represents the work done.  The reasons for this are 

shown below.

area  under graph
    =  work done in  expanding 
          from state  A to  state  B

p
re
s
s
u
re
 p

p

volume V

A B area  of strip
    =  pV
    =  work done  
          in  expansion

V

This turns out to be generally true for any thermodynamic process.

p
re
ss

u
re
 p

volume V

A

B

C

work done by  gas 
expanding from 
state  A to  state B  
to  state C

  

A

D

C

work done by  
atmosphere  as 
gas contracts 
from state  C to  
state  D  to  state  A

p
re
ss

u
re
 p

volume V
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t f   c

irst law o thermodynamiCs
There are three undamental laws o thermodynamics.  The 

frst law is simply a statement o the principle o energy 

conservation as applied to the system.  I an amount o thermal 

energy Q  is  given to a system,  then one o two things must 

happen (or a combination o both) .  The system can increase its 

internal energy U or it can do work W.

As energy is conserved

Q  =  U +  W

It is  important to remember what the signs o these symbols 

mean.  They are all taken rom the systems point o view.

Q   I this is  positive,  then thermal energy is going into the 

system.  

I it is  negative,  then thermal energy is going out o the 

system.

U  I this is  positive,  then the internal energy o the system 

is increasing.  (The temperature o the gas is  increasing.)  

I it is  negative,  the internal energy o the system is 

decreasing. (The temperature o the gas is  decreasing.)

W  I this is  positive,  then the system is doing work  on 

the surroundings.(The gas is  expanding.)  

I it is  negative,  the surroundings are doing work  on 

the system.  (The gas is  contracting.)

example
A monatomic gas doubles its volume as a result o an 

adiabatic expansion.  What is  the change in pressure?

 p
1
  V 

1

  
  
5
 _ 

3
  
  =  p

2
  V 

2

  
  
5
 _ 

3
  
 

   
p

2
 _ 

p
1

   =    (   V1
 _ 

V
2

  )   
  5  _ 
3
  

 

 =   0.5  
  
5
 _ 

3
  
 

 =  0.31

  fnal pressure =  31% o initial pressure

ideal gas proCesses
A gas can undergo any number o dierent types o change or process.  Four important processes are considered below.  In each case 

the changes can be represented on a pressurevolume diagram and the frst law o thermodynamics must apply.  To be precise,  these 

diagrams represent a type o process called a reversible process.

1 .   Isochoric 

(isovolumetric)

In an isochoric 

process,  also called an 

isovolumetric process,  

the gas has a constant 

volume.  The diagram 

below shows an 

isochoric decrease  in 

pressure.

p
re
s
s
u
re
 p

volume V

A

B

Isochoric (volumetric)  

change

V =  constant,  or   

  
p
 _ 
T
    =  constant

Q  negative 

U negative (T)

W zero 

2 .  Isobaric

In an isobaric process 

the gas has a constant 

pressure.  The diagram 

below shows an isobaric 

expansion.

A B

p
re
s
s
u
re
 p

volume V

Isobaric change

p  =  constant,  or   

  
V
 _ 
T
    =  constant

Q  positive

U positive (T )

W positive

3.  Isothermal

In an isothermal process 

the gas has a constant 

temperature.  The 

diagram below shows an 

isothermal expansion.

A

B

p
re
s
s
u
re
 p

volume V

Isothermal change

T =  constant,  or  

pV =  constant

Q  positive

U zero

W positive

4.  Adiabatic

In an adiabatic process 

there is  no thermal 

energy transer between 

the gas and the 

surroundings.  This means 

that i the gas does work it 

must result in a decrease 

in internal energy.  A rapid 

compression or expansion 

is approximately 

adiabatic.  This is  because 

done quickly there is not 

sufcient time or thermal 

energy to be exchanged 

with the surroundings.  

The diagram below shows 

an adiabatic expansion.

A

B

p
re
s
s
u
re
 p

volume V

Adiabatic change

Q  zero

U negative (T)

W positive

For a monatomic gas,  the 

equation or an adiabatic 

process is   

 pV 
  
5
 _ 

3
  
  =  constant
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examples
The rst and second laws o thermodynamics both must apply  

to all situations.  Local decreases o entropy are possible so  

long as elsewhere there is a corresponding increase.

1 .  A rerigerator is  an example o a heat pump.  

source of work 
is  the electric 
energy  supply

thermal  energy  taken  from 
ice  box and  ejected  to  
surroundings

A rerigerator

2.  It should be possible to design a 

theoretical system or propelling a 

boat based around a heat engine.  The 

atmosphere could be used as the hot 

reservoir and cold water rom the sea 

could be used as the cold reservoir.  

The movement o the boat through 

the water would be the work done.  

This is possible BUT it cannot continue 

to work or ever.  The sea would be 

warmed and the atmosphere would 

be cooled and eventually there would 

be no temperature dierence.

3 .  Water reezes at 0  C  because this  is  the temperature at 

which the entropy increase o the  surroundings (when 

receiving the latent heat)  equals  the  entropy decrease o 

the water molecules  becoming more ordered.  It would not 

reeze at a higher temperature because this  would mean 

that the overall entropy o the system would decrease.

sc   c  

seCond law of thermodynamiCs
Historically the second law o thermodynamics  has been 

stated in many dierent ways.  All o these versions can be 

shown to be equivalent to one another.  

In principle there is nothing to stop the complete conversion 

o thermal energy into useul work.  In practice,  a gas can not 

continue to expand orever  the apparatus sets a physical 

limit.  Thus the continuous conversion o thermal energy 

into work requires a cyclical process  a heat engine.

Thot
Qhot Qcold

Tcold

Carnot  showed  
that  Qhot  >  W.

In  other words there  
must  be  thermal  energy  
wasted  to  the  cold  reservoir.

W

This realization leads to possibly the simplest ormulation 

o the second law o thermodynamics ( the KelvinPlanck 

ormulation) .  

No heat engine, operating in a cycle, can take in heat 

rom its surroundings and totally convert it into work.

Other possible ormulations include the ollowing:

No heat pump can transer thermal energy rom a 

low-temperature reservoir to a high-temperature 

reservoir without work being done on it  (Clausius) .

Heat fows rom hot objects to cold objects.

The concept o entropy  leads to one nal version o the 

second law.

The entropy o the Universe can never decrease.

entropy and energy degradation
Entropy is a property that expresses the disorder in the 

system.

The details  are not important but the entropy S o a system 

is linked to the number o possible arrangements W o the 

system.  [S =  k
B
 ln(W) ]

Because molecules are in random motion,  one would expect 

roughly equal numbers o gas molecules in each side o a 

container.

An  arrangement  
l ike  this 
is  much  
more l ikely
than  one l ike 
this.

The number o ways o arranging the molecules to get the 

set-up on the right is  greater than the number o ways o 

arranging the molecules to get the set-up on the let.  This 

means that the entropy o the system on the right is  greater 

than the entropy o the system on the let.  

In any random process the amount o disorder will tend 

to increase.  In other words,  the total entropy will always 

increase.  The entropy change S is  linked to the thermal 

energy change Q  and the temperature T.  (S =    
Q
 

___ 
T
  )

Thot

Thot

Tcold
Q

Q

thermal  energy  ow

decrease of entropy  = 
Tcold

Q
increase of entropy  = 

When thermal energy fows rom a hot object to a colder 

object,  overall the total entropy has increased.

In many situations the idea o energy degradation  is  a useul 

concept.  The more energy is shared out,  the more degraded 

it becomes  it is  harder to put it to use.  For example,  the 

internal energy that is  locked  up in oil can be released when 

the oil is  burned.  In the end,  all the energy released will be in 

the orm o thermal energy  shared among many molecules.  

It is  not easible to get it back.

   

increasing temperature of surroundings

-2  C 0  C 2  C

<

ICE
since

ICE/WATER 
MIX
since

WATER
since

entropy  
decrease 
of ice  

formation

entropy  
increase 

of 
surroundings

>

entropy  
decrease 
of ice  

formation

entropy  
increase 

of 
surroundings

=

entropy  
decrease 
of ice  

formation

entropy  
increase 

of 
surroundings
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heat engines
A central concept in the study o thermodynamics is  the heat 

engine.  A heat engine is any device that uses a source o 

thermal energy in order to do work.  It converts heat into work.  

The internal combustion engine in a car and the turbines that 

are used to generate electrical energy in a power station are 

both examples o heat engines.  A block diagram representing a 

generalized heat engine is shown below.

Thot

HOT
reservoir

COLD
reservoir

Tcold
thermal
energy
Qhot

thermal
energy
Qcold

work
done W

ENGINE

Heat engine

In this context,  the word reservoir  is used to imply a constant 

temperature source (or sink)  o thermal energy.  Thermal energy can 

be taken rom the hot reservoir without causing the temperature o 

the hot reservoir to change. Similarly thermal energy can be given to 

the cold reservoir without increasing its temperature.

An ideal gas can be used as a heat engine.  The pV diagram right 

represents a simple example.  The our-stage cycle returns the gas 

to its starting conditions,  but the gas has done work.  The area 

enclosed by the cycle represents the amount o work done.  

In order to do this,  some thermal energy must have been 

taken rom a hot reservoir (during the isovolumetric increase 

in pressure and the isobaric expansion) .  A dierent amount 

o thermal energy must have been ejected to a cold reservoir 

(during the isovolumetric decrease in pressure and the isobaric 

compression) .

isovolumetric 
decrease in  
pressure

total  work 
done by  
the  gasp

re
ss

u
re
 p

isovolumetric 
increase in  
pressure

volume V

isobaric compression

isobaric expansion
A B

C D

The thermal efciency o a heat engine is defned as 

  =     
work done
   ____    

(thermal energy taken rom hot reservoir)
  

This is  equivalent to 

 =     
rate o doing work

   ____    
(thermal power taken rom hot reservoir)

  

 =     
useul work done

  __  
energy input

  

The cycle o changes that results in a heat engine with the 

maximum possible efciency is called the Carnot cycle.

heat pumps
A heat pump  is  a heat engine being run in reverse.  A 

heat pump causes thermal energy to be moved rom a cold 

reservoir to a hot reservoir.  In order or this to be achieved,  

mechanical work must be done.

Thot

HOT
reservoir

COLD
reservoir

Tcold

thermal
energy
Qhot

thermal
energy
Qcold

input
work W

HEAT
PUMP

Heat pump

Once again an ideal gas can be used as a heat pump.  The 

thermodynamic processes can be exactly the same ones as were 

used in the heat engine,  but the processes are all opposite.  This 

time an anticlockwise circuit will represent the cycle o processes.  

p
re
s
s
u
re
 p

isobaric expansion

isobaric compression

isovolumetric 

decrease in  

pressure

isovolumetric 

increase in  

pressure

A D

B C

total  work 

done on  

the  gas

volume V

Carnot CyCles and Carnot theorem
The Carnot cycle represents the cycle o processes or a 

theoretical heat engine with the maximum possible efciency.  

Such an idealized engine is called a Carnot engine.

Qhot

Qcold

thermal  energy  

given  out

thermal  energy  taken  in

area  =  work done  

                by  gas during 

                Carnot cycle

A

D

B

C

p
re
ss

u
re
 p

volume V

Carnot cycle

It consists o an ideal gas undergoing the ollowing processes.

   Isothermal expansion (A   B)

  Adiabatic expansion (B    C )

  Isothermal compression (C    D)

  Adiabatic compression (D    A)

The temperatures o the hot and cold reservoirs fx the 

maximum possible efciency that can be achieved.  

The efciency o a Carnot engine can be shown to be


C arno t

 =  1  -    
T

co ld
 _ 

T
hot

    (where T is  in kelvin)

An engine operates at 300 C  and ejects heat to the surroundings 

at 20 C.  The maximum possible theoretical efciency is


C arno t

 =  1  -    
293
 _ 

573
    =  0.49 =  49%

h    
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definitions of density and pressure

The symbol representing density is the Greek letter rho,  .  The 

average density o a substance is dened by the ollowing equation:

 

  =    
m
 _ 

V
  

average density mass

volume

  Density is a scalar quantity.

  The SI units o density are kg
 
m

- 3
.

  Densities can also be quoted in g
 
cm

- 3
 ( see conversion actor 

below)

  The density o water is  1
 
g

 
cm

- 3
 =  1 ,000

 
kg

 
m

- 3

Pressure at any point in a fuid (a gas or a liquid)  is  dened 

in terms o the orce,  F,  that acts normally (at 90)  to a 

small area,  A,  that contains the point.

p  =    
F
 _ 

A
  

pressure normal orce

area

  Pressure is a scalar quantity  the orce has a direction but 

the pressure does not.  Pressure acts equally in all directions.

  The SI unit o pressure is N
 
m

- 2
 or pascals (Pa) .  1

 
Pa =  1  

N
 
m

- 2

  Atmospheric pressure   1 05  
Pa

  Absolute pressure is the actual pressure at a point in a 

fuid.  Pressure gauges oten record the difference  between 

absolute pressure and atmospheric pressure.  Thus i a 

dierence pressure gauge gives a reading o 2    1 0
5  
Pa or a 

gas,  the absolute pressure o the gas is  3    1 05
 Pa.

variation  of fluid pressure

The pressure in a fuid increases with depth.  I two points are 

separated by a vertical distance,  d,  in a fuid o constant density,  


f 
,  then the pressure dierence,  p,  between these two points is:

p =  
f 
gd

pressure dierence due to depth

density o fuid gravitational eld strength

depth

The total pressure at a given depth in a liquid is the addition 

o the pressure acting at the surace (atmospheric pressure)  

and the additional pressure due to the depth:

P =  P
0  
+  

f 
gd

Total pressure gravitational eld strength

depth

Atmospheric pressure density o fuid

Note that:

  Pressure can be expressed in terms o the equivalent 

depth (or head)  in a known liquid.  Atmospheric pressure 

is approximately the same as exerted by a 760 mm high 

column o mercury (Hg)  or a 1 0 m column o water.

  As pressure is  dependent on depth,  the pressures at two 

points that are at the same horizontal level in the same 

liquid must be the same provided they are connected by 

that liquid and the liquid is static.

hexcess gas
pressure P

A B

atmospheric pressure

the water column  exerts
a  pressure at  B  equal  to
the excess pressure of
the gas supply:  P =  hg

  The pressure is  independent o the cross-sectional area  

this means that liquids will always nd their own level.

BuoyanCy and arChimedes prinCiple

Archimedes  principle states that when a body is immersed 

in a fuid,  it experiences a buoyancy upthrust equal in 

magnitude to the weight o the fuid displaced.  B  =  
f
V

f  
g

22N

(a)

12N

volume of
uid  d isplaced
(w =  10N)

density
of uid

W

17N

volume of
uid  d isplaced

(w =  5N)

W W

B1 B2

A consequence o this 

principle is  that a foating 

object displaces its own 

weight o fuid.

weight  of uid  d isplaced

= tota l  weight  of duck

f  HL

pasCals prinCiple

Pascals  principle states that the pressure applied to an 

enclosed liquid is transmitted to every part o the liquid,  

whatever the shape it takes.  This principle is  central to the 

design o many hydraulic  systems and is dierent to how 

solids respond to orces.

When a solid object (e.g.  an incompressible stick)  is pushed at 

one end and its other end is held in place,  then the same orce 

will be exerted on the restraining object.

Incompressible solids transmit orces whereas incompressible 

liquids transmit pressures.

piston  of 
area  A1

hydraul ic l iquid

piston  of area  A2

load  platform

appl ied  force  F
(eort)load  = F 

A2
A1

hydrostatiC equiliBrium

A fuid is in hydrostatic equilibrium  when it is  at rest.  This 

happens when all the orces on a given volume o fuid are 

balanced.  Typically external orces (e.g.  gravity)  are balanced 

by a pressure gradient across the volume o fuid (pressure 

increases with depth  see above) .  

volume of uid

downward  force due to

pressure from uid  above

weight  of uid

contained  in  volume
upward  force  due to

pressure from uid  below

W
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the ideal luid
In most real situations,  fuid fow is extremely complicated.  The 

ollowing properties dene an ideal fuid that can be used to 

create a simple model.  This simple model can be later rened to 

be more realistic.

An ideal fuid:

  Is incompressible   thus its density will be constant.

  Is  non-viscous   as a result o fuid fow,  no energy gets 

converted into thermal energy.  See page 167 or the denition 

o the viscosity o a real fuid.

  Involves a steady fow  (as opposed to a turbulent,  or chaotic,  

fow)  o fuid.  Under these conditions the fow is laminar (see 

box below) .  See page 167 or an analysis o turbulent fow.

  Does not have angular momentum   it does not rotate.

the Bernoulli  eeCt
When a fuid fows into a narrow section o a pipe:

  The fuid must end up moving at a higher speed (continuity 

equation) .    

  This means the fuid must have been accelerated 

orwards.   

higher pressure

lower speed

higher pressure

lower speed

lower pressure

higher speed

  This means there must be a pressure dierence orwards with 

a lower pressure in the narrow section and a higher pressure 

in the wider section.   

Thus an increase in fuid speed must be associated with a 

decrease in fuid pressure.  This is the Bernoulli eect  the 

greater the speed,  the lower the pressure and vice versa.  

the Bernoulli  equation
The Bernoulli equation results rom a consideration o the 

work done and the conservation o energy when an ideal fuid 

changes:

  its speed (as a result o a change in cross-sectional area)  

  its vertical height as a result o work done by the fuid pressure.

The equation identies a quantity that is  always constant 

along any given streamline:  

density 

o fuid

density 

o fuid

gravitational 

eld strength

vertical heightspeed o fuid 

particles fuid pressure  

  
1  _ 

2
   v2  + gz + p = constant

Note that:

  The rst term (   1  __ 
2
   v2  ) ,  can be thought o as the dynamic pressure.  

  The last two terms (gz + p) ,  can be thought o as the static 

pressure.

  Each term in the equation has several possible units:   

  N m- 2 ,  Pa,  J m- 3 .   

  The last o the above units leads to a new interpretation or 

the Bernoulli equation:

KE  

per unit 

volume

gravitational PE   

per unit  

volume

+   pressure =  constant+

laminar low, streamlines and the  

Continuity equation
When the fow o a liquid is steady or laminar,  dierent parts 

o the fuid can have dierent instantaneous velocities.   The 

fow is said to be laminar i every particle that passes through 

a given point has the same velocity whenever the observation 

is  made.   The opposite o laminar fow,  turbulent fow,  takes 

place when the particles that pass through a given point have a 

wide variation o velocities depending on the instant when the 

observation is made (see page 1 67) .   

A streamline  is  the path taken by a particle in the fuid and 

laminar fow means that all particles that pass through a 

given point in the fuid must ollow the same streamline.   The 

direction o the tangent to a streamline gives the direction o 

the instantaneous velocity that the particles o the fuid have at 

that point.  No fuid ever crosses a streamline.   Thus a collection 

o streamlines can together dene a tube o fow.   This is  

tubular region o fuid where fuid only enters and leaves the 

tube through its  ends and never through its sides.

speed  1

speed  2

area  A2
density  2

area  A1
density  1 boundary

(streamlines)

In a time t,  the mass,  m
1
,  entering the cross-section A

1
 is  

m
1  
= 

1
A

1
v
1
t

Similarly the mass,  m
2
,  leaving the cross-section A

2
 is

m
2  
= 

2
A

2
v
2
t

Conservation o mass applies to this tube o fow,  so


1
A

1
v
1  
= 

2
A

2
v
2

This is an ideal fuid and thus incompressible meaning 
1  
= 

2
,  so

A
1
v
1  
= A

2
v
2
 or Av =  constant

This is the continuity equation.

      B  fcHL
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appliCations of the Bernoulli  equation
a)  Flow out o a container

h

A

B
arbitrary  zero

streamlinel iquid

density  

To calculate the speed o fuid fowing out o a container,  we 

can apply Bernoullis equation to the streamline shown above.

At A,  p  =  atmospheric and v =  zero

At B,  p  =  atmospheric and v =  ?

  
1
 _ 

2
   v2  +  gz +  p  =  constant

 0 +  hg + p =   1  _ 
2
   v2  + 0 + p

v =  
___
 2gh  

b)  Venturi tubes

A Venturi meter allows the rate o fow o a fuid to be 

calculated rom a measurement o pressure dierence 

between two dierent cross-sectional areas o a pipe.

h

area  A constriction
of area  a

manometer l iquid
(e.g.  mercury) ,
density  2

ow of ( e.g.)  water,
density  1

A

B



to  metal  end

  The pressure dierence between A and B  can be 

calculated by taking readings o h  and 
2
 rom the 

attached manometer:

 P
A  
-  P

B  
= h

2  
g

  This value and measurements o A,  a  and 
1
 allows the 

fuid speed at A to be calculated by using Bernoullis 

equation and the equation o continuity

v =       
2h

2   
g
 ________ 

 [ 1
  (   A  __ 
a
  )   

2

  -  1  ]  
    

  The rate o fow o fuid through the pipe is equal to A    v

c)  Fragrance spray

below-pressure zone

a.   Squeezing
      bulb
      forces a ir
      through
      tube

b.   Constriction  in  tube causes low pressure
      region  as a ir travels faster in  this  section

c.   Liquid  is  drawn  up tube
      by  pressure d ierence
      and  forms l itt le  droplets
      as  it  enters the  a ir jet

d.   Fine  spray  of fragrance
      is  emitted  from nozzle

squeeze-
bulb

d)  Pitot tube to determine the speed o a plane

A pitot tube is attached acing orward on a plane.  It has 

two separate tubes:  

smal l  static
pressure openings

impact
opening static

pressure
tube

total
pressure
tube

direction
of airow

  The ront hole ( impact opening)  is  placed in the 

airstream and measures the total pressure ( sometimes 

called the stagnation pressure) ,  P
T
.  

  The side hole(s)  measures the static pressure,  P
s
.  

  The dierence between P
T
 and P

s
,  is  the dynamic 

pressure.  The Bernoulli equation can be used to calculate 

airspeed:

P
T  
-  P

s  
=   1  _ 

2
   v2

v =  
________

   
2 (P

T  
-  P

s
)
 _     

e)  Aerooil (aka airoil)

air ow

aerofoi l

pressure P2

pressure P1

dynamic l ift  F

1

2

Note that:

  Streamlines closer together above the aerooil imply a 

decrease in cross-sectional area o equivalent tubes o fow 

above the aerooil.  

  Decrease in cross-sectional area o tube o fow implies 

increased velocity o fow above the aerooil (equation o 

continuity) .  v
1  
> v

2

  Since v
1  
> v

2
,   P

1  
< P

2

  Bernoulli equation can be used to calculate the pressure 

dierent (height dierence not relevant)  which can support 

the weight o the aeroplane.

  When angle o attack is too great,  the fow over the upper 

surace can become turbulent.  This reduces the pressure 

dierence and leads to the plane stalling.

B   xmHL
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definition  of visCosity
An ideal fuid does not resist the relative motion between 

dierent layers o fuid.  As a result there is no conversion o work 

into thermal energy during laminar fow and no external orces 

are needed to maintain a steady rate o fow.  Ideal fuids are non-

viscous whereas real fuids are viscous.  In a viscous fuid,  a steady 

external orce is needed to maintain a steady rate o fow (no 

acceleration) .  Viscosity is an internal riction between dierent 

layers o a fuid which are moving with dierent velocities.

The denition o the viscosity o a fuid,  ,  (Greek letter Nu)  is  

in terms o two new quantities,  the tangential stress,  ,  and 

the velocity gradient,    v ___
 

y
    ( see RH side).

The coecient o viscosity   is  dened as:  

 =    
tangential stress

  
__

  
velocity gradient

    =    
FA
 _ 

vy
  

  The units o   are N s  m
- 2
 or kg m

- 1
 s

- 1
 or Pa s

  Typical values at room temperature:

 Water:  1 .0   1 0- 3
 Pa s

 Thick syrup:  1 .0   1 02
 Pa s

  Viscosity is  very sensitive to changes o temperature.

For a class o fuid,  called Newtonian fuids,  experimental 

measurements show that tangential stress is proportional to velocity 

gradient (e.g.  many pure liquids) .  For these fuids the coecient o 

viscosity is constant provided external conditions remain constant.

A)  Tangential stress

relative

velocity  v

retarding force
accelerating force

area  of contact  A

-F

F

The tangential stress is  dened as:

 =   
F
 _ 

A
  

  Units o tangential stress are N m
- 2
 or Pa

B)  Velocity gradient

y

(v +  v)
v

y

v

velocity

The velocity gradient is  dened as:  

velocity gradient =    
v
 _ 

y
  

  Units o velocity gradient are s
- 1
 

stokes law
Stokes  law predicts the viscous drag orce F

D
 that acts on a 

perect sphere when it moves through a fuid:

-FF
v

r

driving
force

equal  opposing
viscous drag

innite  expanse
of uid  

uid  at  this point  moves
with  body  (boundary  layer)

sphere  has
uniform
velocity

F
D  
= 6rv

Drag orce acting on sphere in N

radius o sphere in m

viscosity o fuid in Pa s

velocity o sphere in m s
- 1

Note Stokes  law assumes that:

  The speed o the sphere is small so that:

 the fow o fuid past the sphere is streamlined

 there is  no slipping between the fuid and the sphere

  The fuid is  innite in volume.   Real spheres alling through 

columns o fuid can be aected by the proximity o the 

walls o the container.

  The size o the particles o the fuid is very much smaller 

than the size o the sphere.

The orces on a sphere alling through a fuid at terminal 

velocity are as shown below:

v

W

U FD

sphere

velocity

uid  upthrust

sphere

density  

uid

density  
pul l  of

Earth

viscous drag

r

At terminal velocity v
t
,  

W = U + F
D

F
D  
= U -  W

6rv
t  
=   

4
 
_
 

3
   r3 ( -  )g

 v
t  
=   

2r2 ( - )g
 __
 

9
  

turBulent flow  the reynolds numBer
Streamline fow only occurs at low fuid fow rates.   At high 

fow rates the fow becomes turbulent:

turbulentlaminar

It is  extremely dicult to predict the exact conditions when 

fuid fow becomes turbulent.   When considering fuid fow 

down a pipe,  a useul number to consider is  the Reynolds 

number,  R,  which is dened as:

R =   
vr
 
_

 

  

Reynolds 

number

viscosity o fuid

speed o 

bulk fow
radius o pipe

density o fuid

Note that:

  The Reynolds number does not have any units  it is just a ratio.

  Experimentally,  fuid fow is oten laminar when R <  1 000 and 

turbulent when R >  2000 but precise predictions are dicult.

vcHL
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damping
Damping  involves a rictional orce that is  always in the 

opposite direction to the direction o motion o an oscillating 

particle.  As the particle oscillates,  it does work against this 

resistive (or dissipative)  orce and so the particle loses  

energy.  As the total energy o the particle is  proportional to the 

(amplitude) 2  o the SHM,  the amplitude decreases exponentially 

with time.

time,  t



2


4


d
is
p
la
ce

m
e
n
t,
 x

exponentia l  envelope

The above example shows the eect o light damping  ( the 

system is  said to be underdamped)  where the resistive orce 

is  small so a small raction o the total energy is removed each 

cycle.  The time period o the oscillations is  not aected and the 

oscillations continue or a signifcant number o cycles.  The time 

taken or the oscillations to die out  can be long.  

Heavy damping  or overdamping  involves large resistive 

orces (e.g.  the SHM taking place in a viscous liquid)  and can 

completely prevent the oscillations rom taking place.  The time 

taken or the particle to return to zero displacement can again 

be long.  

Critical damping involves an intermediate value or resistive 

orce such that the time taken or the particle to return to zero 

displacement is a minimum.  Eectively there is no overshoot.  

Examples o critically damped systems include electric meters 

with moving pointers and door closing mechanisms.

0.40.2 0.6 1.00.8 1.2 1.4 1.6

overdamped

overshoot

underdamped

critical
damping

time

d
is
p
la
ce

m
e
n
t

natural frequenCy and resonanCe
I a system is temporarily displaced rom its equilibrium 

position,  the system will oscillate as a result.  This oscillation will 

be at the natural frequency of vibration  o the system.  For 

example,  i you tap the rim o a wine glass with a knie,  it will 

oscillate and you can hear a note or a short while.  Complex 

systems tend to have many possible modes o vibration each 

with its own natural requency.

It is also possible to orce a system to oscillate at any requency 

that we choose by subjecting it to a changing orce that varies 

with the chosen requency.  This periodic driving orce must be 

provided rom outside the system.  When this driving frequency  

is  frst applied,  a combination o natural and orced oscillations 

take place which produces complex transient  oscillations.  Once 

the amplitude o the transient oscillations die down,  a steady 

condition is achieved in which:

  The system oscillates at the driving requency.

  The amplitude o the orced oscillations is  fxed.  Each cycle 

energy is dissipated as a result o damping and the driving 

orce does work on the system.  The overall result is  that the 

energy o the system remains constant.

  The amplitude o the orced oscillations depends on:

  the comparative values o the natural requency and the 

driving requency

 the amount o damping present in the system.

l ight  damping

increased  damping

natural  frequency,  fnatural

driving frequency,  fdriving

a
m
p
lit
u
d
e
 o
f o

s
ci
lla

ti
o
n

heavy  damping

Resonance  occurs when a system is subject to an oscillating 

orce at exactly the same requency as the natural requency o 

oscillation o the system.

q faCtor and damping
The degree o damping is  measured by a quantity called the 

quality actor or Q actor.   It is  a ratio (no units)  and the 

defnition is:

Q  =  2    
energy stored

  __  
energy lost per cycle 

  

Since the energy stored is proportional to the square o 

amplitude o the oscillation,  measurements o decreasing 

amplitude with time can be used to calculate the Q actor.   The 

Q actor is  approximately equal to the number o oscillations 

that are completed beore damping stops the oscillation.

Typical orders o magnitude or dierent Q-actors:

Car suspension:  1

Simple pendulum:  1 03

Guitar string:  1 03

Excited atom:  107

When a system is in resonance and its amplitude is constant,  

the energy provided by the driving requency during one cycle 

is  all used to overcome the resistive orces that cause damping.  

In this situation,  the Q actor can be calculated as:

Q =  2    resonant requency     
energy stored

  __  
power loss

   

fc c  c (1)HL
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rc (2)HL

phase of forCed osCillations 
Ater transient oscillations have died down,  the requency o the orced oscillations equals the driving requency.  The phase 

relationship between these two oscillations is  complex and depends on how close the driven system is to resonance:

0

in  phase

heavy  damping

l ight  damping

natural

frequency

forcing

frequency

f/Hz

driven  vibration

   period  behind

phase lag

/rad

1

2




2

driven  vibration

   period  behind
1

4

examples of resonanCe

Comment

Vibrations in machinery When in operation,  the moving parts o machinery provide regular driving orces on the 

other sections o the machinery.  I the driving requency is equal to the natural requency,  the 

amplitude o a particular vibration may get dangerously high.  e.g.  at a particular engine speed 

a trucks rear view mirror can be seen to vibrate.

Quartz oscillators A quartz crystal eels a orce i placed in an electric feld.  When the feld is removed,  the 

crystal will oscillate.  Appropriate electronics are added to generate an oscillating voltage rom 

the mechanical movements o the crystal and this is  used to drive the crystal at its own natural 

requency.  These devices provide accurate clocks or microprocessor systems.

Microwave generator Microwave ovens produce electromagnetic waves at a known requency.  The changing 

electric feld is a driving orce that causes all charges to oscillate.  The driving requency o the 

microwaves provides energy,  which means that water molecules in particular are provided 

with kinetic energy  i.e.  the temperature is increased.

Radio receivers Electrical circuits can be designed (using capacitors,  resistors and inductors)  that have their 

own natural requency o electrical oscillations.  The ree charges (electrons)  in an aerial will 

eel a driving orce as a result o the requency o the radio waves that it receives.  Adjusting 

the components o the connected circuit allows its natural requency to be adjusted to equal 

the driving requency provided by a particular radio station.  When the driving requency 

equals the circuits  natural requency,  the electrical oscillations will increase in amplitude and 

the chosen radio stations signal will dominate the other stations.

Musical instruments Many musical instruments produce their sounds by arranging or a column o air or a string to 

be driven at its natural requency which causes the amplitude o the oscillations to increase.

Greenhouse eect The natural requency o oscillation o the molecules o greenhouse gases is  in the inra-red 

region.  Radiation emitted rom the Earth can be readily absorbed by the greenhouse gases in 

the atmosphere.  See page 92  or more details.

       



170 i B  Q u E s t i o n s    o p t i o n  B    E n g i n E E r i n g  p h ys i c s

iB questons  opton B  engneerng physcs
1 .  A sphere o mass m  and radius r rolls,  without slipping,  rom 

rest down an inclined plane.   When it reaches the base o the 

plane,  it has allen a vertical distance h.  Show that the speed 

o the sphere,  v,  when it arrives at the base o the incline is 

given by:

v =   
_____

   
1 0gh
 _ 

7
     [4]

2.  A fywheel o moment o inertia 0.75  kg  m 2   is  accelerated 

uniormly rom rest to an angular speed o 8.2  rad  s   1   in 6.5  s.

a)  Calculate the resultant torque acting on the fywheel 

during this time.  [2]

b)  Calculate the rotational kinetic energy o the fywheel 

when it rotates at 8.2  rad  s   1   [2]

c)  The radius o the fywheel is  1 5  cm.   A breaking orce 

applied on the circumerence and brings it to rest rom 

an angular speed o 8.2  rad  s   1    in exactly 2  revolutions.  

Calculate the value o the breaking orce.  [2]

3.   A xed mass o a gas undergoes various changes o 

temperature,  pressure and volume such that it is  taken round 

the pV cycle shown in the diagram below.

2.0

1.0

1.0

Z 

X 

Y 

2.0 3.0 4.0 5.0 volume/103  m3

p
re
s
s
u
re
/1
0
5
 P
a

The ollowing sequence o processes takes place during 

the cycle.

X   Y  the gas expands at constant temperature and the gas 

absorbs energy rom a reservoir and does 450 J o 

work.

Y   Z  the gas is  compressed and 800 J o thermal energy is 

transerred rom the gas to a reservoir.

Z   X  the gas returns to its initial stage by absorbing energy 

rom a reservoir.

a)  Is  there a change in internal energy o the gas during  

the processes X   Y?  Explain.  [2]

b)  Is  the energy absorbed by the gas during the process  

X   Y less than,  equal to or more than 450 J?  Explain.  [2]

c)  Use the graph to determine the work done on the gas 

during the process Y   Z.  [3]

d)  What is  the change in internal energy o the gas  

during the process Y   Z?  [2]

e)  How much thermal energy is  absorbed by the gas  

during the process Z   X?  Explain your answer.  [2]

)  What quantity is  represented by the area enclosed by  

the graph? Estimate its value.  [2]

g)  The overall eciency o a heat engine is dened as 

Eciency =    
net work done by the gas during a cycle

    ____    
total energy absorbed during a cycle

  

I this pV cycle represents the cycle or a particular heat 

engine determine the eciency o the heat engine.  [2]

4.  In a diesel  engine,  air is  initially at a pressure o 1     1 0 5   Pa 
and a temperature o 27  C.  The air undergoes the cycle o 
changes listed below.  At the end o the cycle,  the air is  back at 

its starting conditions.

1  An adiabatic compression  to 1 /20th o its original volume.

2  A brie isobaric expansion  to 1 /10th o its original volume.

3  An adiabatic expansion  back to its original volume.

4 A cooling down at constant volume.

a)  Sketch,  with labels,  the cycle o changes that the gas 

undergoes.  Accurate values are not required.  [3]

b)  I the pressure ater the adiabatic compression  has risen 

to 6.6     1 0 6   Pa,  calculate the temperature o the gas.  [2]

c)  In which o the our processes:

( i)  is  work done on  the gas?  [1 ]

( ii)  is  work done by  the gas?  [1 ]

( iii)  does ignition o the air-uel mixture take place? [1 ]

d)  Explain how the 2nd law o thermodynamics applies  

to this cycle o changes.  [2]

HL

5.   With the aid o diagrams,  explain

a)  What is  meant by laminar fow

b)  The Bernoulli eect

c)  Pascals principle

d)  An ideal fuid [8]

6.  Oil,  o viscosity 0.35  Pa s  and density 0.95  g  cm - 3  ,  fows 

through a pipe o radius 20 cm at a velocity o 2 .2  m  s  - 1  .  

Deduce whether the fow is  laminar or turbulent.  [4]

7.  A pendulum clock maintains a constant amplitude by means 

o an electric power supply.  The ollowing inormation is 

available or the pendulum:

Maximum kinetic energy:  5    1 0- 2  J

Frequency o oscillation:  2  Hz

Q actor:  30

Calculate:

a)  The driving requency o the power supply [3]

b)  The power needed to drive the clock.   [3]

       


