Heat Worksheet Solutions

Latent Heat Solutions

Specific Heat Solutions

1. How much water at $50^{\circ} \mathrm{C}$ is needed just to melt 2.2 kg of ice at $0^{\circ} \mathrm{C}$?

- $\mathrm{Q}_{\mathrm{w}}=\mathrm{Q}_{1}$
- $m_{w} c_{w} \Delta T=m_{1} L_{f}$
- $\mathrm{m}_{\mathrm{w}}{ }^{*} 4200 \mathrm{~J} / \mathrm{kgK}^{*} 50 \mathrm{~K}=2.2 \mathrm{~kg} * 3.34\left(10^{5}\right) \mathrm{J} / \mathrm{kg}$
- $\mathrm{m}_{\mathrm{w}}=3.5 \mathrm{~kg}$

2. How much water at $32^{\circ} \mathrm{C}$ is needed just to melt 1.5 kg of ice at $-10^{\circ} \mathrm{C}$?

- $Q_{w}=Q_{1}$
- $m_{w} c_{w} \Delta T=m_{l} L_{f}+m_{l} c_{l} \Delta T$
- $\mathrm{m}_{\mathrm{w}}{ }^{*} 4200 \mathrm{~J} / \mathrm{kgK} * 32 \mathrm{~K}=1.5 \mathrm{~kg} * 3.34\left(10^{5}\right) \mathrm{J} / \mathrm{kg}+$ $1.5 \mathrm{~kg} * 2100 \mathrm{~J} / \mathrm{kgK} \mathrm{K}^{2} 10 \mathrm{~K}$
- $\mathrm{m}_{\mathrm{w}}=3.962 \mathrm{~kg}$
- $\mathrm{m}_{\mathrm{w}}=4 \mathrm{~kg}$

3. How much steam at $100^{\circ} \mathrm{C}$ is

 needed to melt 5 kg of ice at $-15^{\circ} \mathrm{C}$?- $\mathrm{Q}_{\mathrm{W}}=\mathrm{Q}_{1}$
- $m_{s} L_{v}+m_{s} c_{w} \Delta T=m_{l} L_{f}+m_{l} c_{l} \Delta T$
- $\mathrm{m}_{\mathrm{s}}{ }^{*} 22.5\left(10^{5}\right) \mathrm{J} / \mathrm{kg}+\mathrm{m}_{\mathrm{s}}{ }^{*} 4200 \mathrm{~J} / \mathrm{kgK} * 100 \mathrm{~K}=5 \mathrm{~kg}$ * $3.34\left(10^{5}\right) \mathrm{J} / \mathrm{kg}+5 \mathrm{~kg} * 2100 \mathrm{~J} / \mathrm{kgK} * 15 \mathrm{~K}$
- $\mathrm{m}_{\mathrm{s}}=0.68446 \mathrm{~kg}$
- $\mathrm{m}_{\mathrm{s}}=0.7 \mathrm{~kg}$

4. A copper cup holds some water at $4^{\circ} \mathrm{C}$. The copper cup weighs 140 g while the water weighs 80 g . If 100 g of hot water is added, what will be the final temperature of the water?

- $\mathrm{Q}_{\mathrm{c}}+\mathrm{Q}_{\mathrm{cw}}=\mathrm{Q}_{\mathrm{hw}}$
- $0.14 \mathrm{~g} * 390 \mathrm{~J} / \mathrm{kgK} K^{*}\left(\mathrm{~T}_{\mathrm{f}}-4 \mathrm{~K}\right)+0.08 \mathrm{~g}^{*} 4200 \mathrm{~J} /$ $\mathrm{kgK}^{*}\left(\mathrm{~T}_{\mathrm{f}}-4 \mathrm{~K}\right)=0.1 \mathrm{~g} * 4200 \mathrm{~J} / \mathrm{kgK}^{*}\left(90-\mathrm{T}_{\mathrm{f}} \mathrm{K}\right)$
- $810.6 T_{f}=39362.4$
- $\mathrm{T}_{\mathrm{f}}=48.5596 \mathrm{~K}$
- $\mathrm{T}_{\mathrm{f}}=50 \mathrm{~K}$

5a. Explain where the energy is going at each section of the curve from " a " to " e ".

- a. T increases as KE increases, solid phase
- b. PE increases during heat of fusion
- c. T increases as KE increases, liquid phase
- d. PE increases during heat of vaporization
- e. T increases as KE increases, gas phase

$5 b$.

- $\mathrm{Q}_{\mathrm{f}}=\mathrm{m}_{\mathrm{i}} \mathrm{L}_{\mathrm{f}}$
- $(\sim 467 \mathrm{~kJ}-\sim 133 \mathrm{~kJ})=\mathrm{m}_{\mathrm{i}} 334 \mathrm{~kJ} / \mathrm{kg}$
- $\mathrm{m}_{\mathrm{i}}=\sim 1 \mathrm{~kg}$

5 c . Using section " c ", calculate the amount of ice used to produce the graph.

- $\Delta \mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $(\sim 900 \mathrm{~kJ}-\sim 467 \mathrm{~kJ})=\mathrm{m}_{\mathrm{i}}{ }^{*} 4200 \mathrm{~J} / \mathrm{kgK} *(100 \mathrm{~K}-$ OK)
- $\mathrm{m}_{\mathrm{i}}=\sim 1 \mathrm{~kg}$

1. What is the specific heat of a substance that absorbs 2500 joules of heat when a sample of 100 g of the substance increases in temperature from $10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$?

- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $2500 \mathrm{~J}=100 \mathrm{~g} * \mathrm{c} *(343 \mathrm{~K}-283 \mathrm{~K})$
- $c=2500 \mathrm{~J} /(100 \mathrm{~g} * 60 \mathrm{~K})$
- $c=0.416667 \mathrm{~J} / \mathrm{gK}$
- $c=0.4 \mathrm{~J} / \mathrm{gK}$

2. If 200 grams of water is to be heated from $24.0^{\circ} \mathrm{C}$ to $100.0^{\circ} \mathrm{C}$ to make a cup of tea, how much heat must be added? The specific heat of water is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $\mathrm{Q}=200 \mathrm{~g} * 4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} *\left(100^{\circ} \mathrm{C}-24^{\circ} \mathrm{C}\right)$
- $\mathrm{Q}=63536 \mathrm{~J}$
- $\mathrm{Q}=60000 \mathrm{~J}$

3. How many grams of water would require 2200 joules of heat to raise its temperature from $34^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$?

- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $m=Q /(c \Delta T)$
- $m=2200 \mathrm{~J} /\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} * 6^{\circ} \mathrm{C}\right)$
- $m=7.97 \mathrm{~g}$
- $\mathrm{m}=8.0 \mathrm{~g}$

4. A block of aluminum weighing 140 g is cooled from $98.4^{\circ} \mathrm{C}$ to $62.2^{\circ} \mathrm{C}$ with the release of 1080 joules of heat. From this data, calculate the specific heat of aluminum.

- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $c=Q /(m \Delta T)$
- $\mathrm{c}=1080 \mathrm{~J} /(140 \mathrm{~g} * 36.2 \mathrm{~K})$
- $c=0.213 \mathrm{~J} / \mathrm{gK}$
- $c=0.21 \mathrm{~J} / \mathrm{gK}$
5.100 .0 mL of $4.0^{\circ} \mathrm{C}$ water is heated until its temperature is $37^{\circ} \mathrm{C}$. If the specific heat of water is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, calculate the amount of heat energy needed to cause this rise in temperature.
- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$

density of water $=1 \mathrm{~g} / \mathrm{mL}$

- $\mathrm{Q}=100 \mathrm{~g} * 4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} * 33^{\circ} \mathrm{C}$
- $\mathrm{Q}=13794 \mathrm{~J}$
- $\mathrm{Q}=14000 \mathrm{~J}$

6. A total of 54.0 joules of heat are absorbed as 58.3 g of lead is heated from $12.0^{\circ} \mathrm{C}$ to $42.0^{\circ} \mathrm{C}$. From these data, what is the specific heat of lead?

- $Q=m c \Delta T$
- $c=Q /(m \Delta T)$
- $c=54 \mathrm{~J} /(58.3 \mathrm{~g} * 30 \mathrm{~K})$
- $c=0.030875 \mathrm{~J} / \mathrm{gK}$
- $c=0.0309 \mathrm{~J} / \mathrm{gK}$

7. The specific heat of wood is $2.03 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. How much heat is needed to convert 550 g of wood at $-15^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$?

- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $\mathrm{Q}=550 \mathrm{~g} * 2.03 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} * 25^{\circ} \mathrm{C}$
- $\mathrm{Q}=27912.5 \mathrm{~J}$
- $\mathrm{Q}=28000 \mathrm{~J}$

8. What is the total amount of heat needed to change 2.25 kg of silver at $0.0^{\circ} \mathrm{C}$ to $200.0^{\circ} \mathrm{C}$? The specific heat of silver is $0.129 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $\mathrm{Q}=2250 \mathrm{~g} * 0.129 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} * 200^{\circ} \mathrm{C}$
- $\mathrm{Q}=58050 \mathrm{~J}$
- $\mathrm{Q}=58000 \mathrm{~J}$

9. Granite has a specific heat of $800 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. What mass of granite is needed to store $150,000 \mathrm{~J}$ of heat if the temperature of the granite is to be increased by $15.5^{\circ} \mathrm{C}$?

- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $m=Q /(c \Delta T)$
- $\mathrm{m}=150000 \mathrm{~J} /\left(800 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} * 15.5^{\circ} \mathrm{C}\right)$
- $\mathrm{m}=12.097 \mathrm{~g}$
- $\mathrm{m}=10 \mathrm{~g}$

10. A 55 kg block of metal has an original temperature of $15.0^{\circ} \mathrm{C}$ and $0.45 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. What will be the final temperature of this metal if 450 J of heat energy are added?

- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $\Delta \mathrm{T}=\mathrm{Q} / \mathrm{mc}$
- $\Delta T=450 \mathrm{~J} /\left(55000 \mathrm{~g} * 0.45 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
- $\Delta T=0.018182^{\circ} \mathrm{C}$
- $\mathrm{T}_{\mathrm{f}}=15.018182^{\circ} \mathrm{C}$
- $\mathrm{T}_{\mathrm{f}}=15^{\circ} \mathrm{C}$

11. Object A specific is $2.45 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ and object B specific heat is $0.82 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. Which object will heat up faster if they have the same mass and equal amount of heat is applied? Explain why.

- Object B will heat up faster because it will require less heat to heat up 1 g of substance by $1^{\circ} \mathrm{C}$, so with the same mass it will require less energy to heat object B the same change in temperature as object A .

