Chapter 2

Section 1 Scientific Method

Objectives .

- Describe the purpose of the scientific method.
- Distinguish between qualitative and quantitative observations. .
- Describe the differences between hypotheses, theories, and models.

Chapter 2

Section 1 Scientific Method

Scientific Method

- The scientific method is a logical approach to solving problems by observing and collecting data, formulating hypotheses, testing hypotheses, and formulating theories that are supported by data.

Chapter 2

Section 1 Scientific Method

Observing and Collecting Data r

- Observing is the use of the senses to obtain information. v
- data may be
- qualitative (descriptive) v
- quantitative (numerical) v
- A system is a specific portion of matter in a given region of space that has been selected for study during an experiment or observation.

Chapter 2

Section 1 Scientific Method

Formulating Hypotheses v

- Scientists make generalizations based on the data. v
- Scientists use generalizations about the data to formulate a hypothesis, or testable statement. -
- Hypotheses are often "if-then" statements.

Chapter 2

Section 1 Scientific Method

Formulating Hypotheses

Chapter 2

Section 1 Scientific Method

Testing Hypotheses •

- Testing a hypothesis requires experimentation that provides data to support or refute a hypothesis or theory. .
- Controls are the experimental conditions that remain constant. v
- Variables are any experimental conditions that change.

Chapter 2

Section 1 Scientific Method

Theorizing v

- A model in science is more than a physical object; it is often an explanation of how phenomena occur and how data or events are related. -
- visual, verbal, or mathematical
- example: atomic model of matter
- A theory is a broad generalization that explains a body of facts or phenomena. -
- example: atomic theory

Chapter 2

Section 1 Scientific Method

Scientific Method

OBSERVING

- collecting data
- measuring
- experimenting
- communicating

FORMULATING HYPOTHESES

- organizing and analyzing data
- classifying
- inferring
- predicting
- communicating

TESTING

- predicting
- experimenting
- communicating
- collecting data
- measuring

Data do not support hypothesis-revise or reject hypothesis

THEORIZING

- constructing
models
- predicting
- communicating

Results confirmed by other scientistsvalidate theory

Chapter 2

Section 2 Units of Measurement

Lesson Starter ,

- Would you be breaking the speed limit in a $40 \mathrm{mi} / \mathrm{h}$ zone if you were traveling at $60 \mathrm{~km} / \mathrm{h}$? v
- one kilometer $=0.62$ miles v
- $60 \mathrm{~km} / \mathrm{h}=37.2 \mathrm{mi} / \mathrm{h}$.
- You would not be speeding! -
- km/h and mi/h measure the same quantity using different units

Chapter 2

Section 2 Units of Measurement

Objectives v

- Distinguish between a quantity, a unit, and a measurement standard. .
- Name and use SI units for length, mass, time, volume, and density. -
- Distinguish between mass and weight.
- Perform density calculations. v
- Transform a statement of equality into a conversion factor.

Chapter 2

Units of Measurement v

- Measurements represent quantities.
- A quantity is something that has magnitude, size, or amount. .
- measurement \neq quantity
- the teaspoon is a unit of measurement v
- volume is a quantity
- The choice of unit depends on the quantity being measured.

Chapter 2

Section 2 Units of Measurement

SI Measurement v

- Scientists all over the world have agreed on a single measurement system called Le Système International d' Unités, abbreviated SI. v
- SI has seven base units v
- most other units are derived from these seven

Chapter 2

Section 2 Units of Measurement

SI Base Units

Quantity	Quantity symbol	Unit name	Unit abbreviation	Defined standard
Length	l	meter	m	the length of the path traveled by light in a vacuum during a time interval of 1/299 792458 of a second
Mass	m	kilogram	kg	the unit of mass equal to the mass of the international prototype of the kilogram
Time	t	second	s	the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium- 133 atom
Temperature	T	kelvin	K	the fraction $1 / 273.16$ of the thermodynamic temperature of the triple point of water
Amount of substance	n	mole	mol	the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon- 12
Electric current	I	ampere	A	the constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per meter of length
Luminous intensity	I_{v}	candela	cd	the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of $1 / 683$ watt per steradian

Chapter 2

Section 2 Units of Measurement

SI Base Units
 Mass -

- Mass is a measure of the quantity of matter. -
- The SI standard unit for mass is the kilogram. -
- Weight is a measure of the gravitational pull on matter. v
- Mass does not depend on gravity.

Chapter 2

Section 2 Units of Measurement

SI Base Units
 Length

- Length is a measure of distance. v
- The SI standard for length is the meter. v
- The kilometer, km, is used to express longer distances \checkmark
- The centimeter, cm, is used to express shorter distances

Chapter 2

Section 2 Units of Measurement

Derived SI Units v

- Combinations of SI base units form derived units.
- pressure is measured in $\mathrm{kg} / \mathrm{m}^{\circ} \mathrm{s}^{2}$, or pascals

Quantity	Quantity symbol	Unit	Unit abbreviation	Derivation
Area	A	square meter	m^{2}	$\mathrm{~m}^{3}$
Volume	V	cubic meter	$\frac{\mathrm{kg}}{\mathrm{m}^{3}}$	$\frac{\text { length } \times \text { width }}{\text { length } \times \text { width } \times \text { height }}$
Density	D	kilograms per cubic meter		

Chapter 2

Section 2 Units of Measurement

Derived SI Units, continued Volume -

- Volume is the amount of space occupied by an object.
- The derived SI unit is cubic meters, m^{3}
- The cubic centimeter, cm^{3}, is often used ${ }{ }{ }^{-}$
- The liter, L , is a non-SI unit
- $1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$
- $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$

Chapter 2

Section 2 Units of Measurement

Derived SI Units, continued Density v

- Density is the ratio of mass to volume, or mass divided by volume. -

$$
\text { density }=\frac{\text { mass }}{\text { volume }} \text { or } D=\frac{m}{V}
$$

- The derived SI unit is kilograms per cubic meter, $\mathrm{kg} / \mathrm{m}^{3}$,
- $\mathrm{g} / \mathrm{cm}^{3}$ or g / mL are also used
- Density is a characteristic physical property of a substance.

Chapter 2

Section 2 Units of Measurement

Derived SI Units, continued Density

- Density can be used as one property to help identify a substance

	Density at $20^{\circ} \mathrm{C}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Density at Solids	0.24^{*}

Chapter 2

Section 2 Units of Measurement

Derived SI Units, continued

Sample Problem A マ

A sample of aluminum metal has a mass of
8.4 g . The volume of the sample is $3.1 \mathrm{~cm}^{3}$. Calculate the density of aluminum.

Chapter 2

Section 2 Units of Measurement

Derived SI Units, continued

 Sample Problem A SolutionGiven: mass $(m)=8.4 \mathrm{~g}$
volume $(V)=3.1 \mathrm{~cm}^{3}$,
Unknown: density (D)

Solution: -

$$
\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{8.4 \mathrm{~g}}{3.1 \mathrm{~cm}^{3}}=2.7 \mathrm{~g} / \mathrm{cm}^{3}
$$

Chapter 2

Section 2 Units of Measurement

Conversion Factors •

- A conversion factor is a ratio derived from the equality between two different units that can be used to convert from one unit to the other. -
- example: How quarters and dollars are related \downarrow

$$
\begin{array}{ll}
\frac{4 \text { quarters }}{1 \text { dollar }}=1 & \frac{1 \text { dollar }}{4 \text { quarters }}=1 \\
\frac{0.25 \text { dollar }}{1 \text { quarters }}=1 & \frac{1 \text { quarter }}{0.25 \text { dollar }}=1
\end{array}
$$

Chapter 2

Section 2 Units of Measurement

Conversion Factors, continued v

- Dimensional analysis is a mathematical technique that allows you to use units to solve problems involving measurements. -
- quantity sought $=$ quantity given \times conversion factor v
- example: the number of quarters in 12 dollars
number of quarters $=12$ dollars \times conversion factor v
? quarters $=12$ dollars $\times \frac{4 \text { quarter }}{1 \text { dollar }}=48$ quarters

Chapter 2

Section 2 Units of Measurement

Using Conversion Factors

1. Identify the quantity and unit given and the unit that you want to convert to.
2. Using the equality that relates the two units, set up the conversion factor that cancels the given unit and leaves the unit that you want to convert to.
3. Multiply the given quantity by the conversion factor. Cancel units to verify that the units left are the ones you want for your answer.

Chapter 2

Conversion Factors, continued Deriving Conversion Factors v

- You can derive conversion factors if you know the relationship between the unit you have and the unit you want. v
- example: conversion factors for meters and decimeters -
$\frac{1 \mathrm{~m}}{10 \mathrm{dm}}$
$\frac{0.1 \mathrm{~m}}{\mathrm{dm}} \quad \frac{10 \mathrm{dm}}{\mathrm{m}}$

Chapter 2

Section 2 Units of Measurement

SI Conversions

Key problemsolving approach: SI conversions

*Kilogram, the base unit for mass, does not appear in this list because it has a different set of conversion values ($1 \mathrm{~kg}=1000 \mathrm{~g}$).

Chapter 2

Section 2 Units of Measurement

Conversion Factors, continued

Sample Problem B .

Express a mass of 5.712 grams in milligrams and in kilograms.

Chapter 2

Section 2 Units of Measurement

Conversion Factors, continued Sample Problem B Solution -

Express a mass of 5.712 grams in milligrams and in kilograms.
Given: 5.712 g >
Unknown: mass in mg and kg •
Solution: mg v
$1 \mathrm{~g}=1000 \mathrm{mg}$
Possible conversion factors: $\frac{1000 \mathrm{mg}}{\mathrm{g}}$ and $\frac{1 \mathrm{~g}}{1000 \mathrm{mg}}$ -

$$
5.712 \not \approx \times \frac{1000 \mathrm{mg}}{\not g}=5712 \mathrm{mg}
$$

Chapter 2

Section 2 Units of Measurement

Conversion Factors, continued Sample Problem B Solution, continued マ

Express a mass of 5.712 grams in milligrams and in kilograms. v
Given: 5.712 g v
Unknown: mass in mg and kg v
Solution: kg >

$$
1000 \mathrm{~g}=1 \mathrm{~kg} \text { > }
$$

Possible conversion factors: $\frac{1000 \mathrm{~g}}{\mathrm{~kg}}$ and $\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}$ -

$$
5.712 g \times \frac{1 \mathrm{~kg}}{1000 g}=0.005712 \mathrm{~kg}
$$

Chapter 2

Lesson Starter

- Look at the specifications for electronic balances. How do the instruments vary in precision?
- Discuss using a beaker to measure volume versus using a graduated cylinder. Which is more precise?

Chapter 2

Section 3 Using Scientific Measurements

Objectives .

- Distinguish between accuracy and precision. -
- Determine the number of significant figures in measurements. \downarrow
- Perform mathematical operations involving significant figures.
- Convert measurements into scientific notation. マ
- Distinguish between inversely and directly proportional relationships.

Chapter 2

Accuracy and Precision -

- Accuracy refers to the closeness of measurements to the correct or accepted value of the quantity measured. -
- Precision refers to the closeness of a set of measurements of the same quantity made in the same way.

Chapter 2

Section 3 Using Scientific Measurements

Accuracy and Precision

Chapter 2

Section 3 Using Scientific

 Measurements
Accuracy and Precision, continued Percentage Error

- Percentage error is calculated by subtracting the accepted value from the experimental value, dividing the difference by the accepted value, and then multiplying by 100 .

Percentage error $=\frac{\text { Value }_{\text {experimental }}-\text { Value }_{\text {acccepted }}}{\text { Value }_{\text {accoppled }}} ? 100$

Chapter 2

Accuracy and Precision, continued

Sample Problem C -

A student measures the mass and volume of a substance and calculates its density as $1.40 \mathrm{~g} / \mathrm{mL}$. The correct, or accepted, value of the density is $1.30 \mathrm{~g} / \mathrm{mL}$. What is the percentage error of the student's measurement?

Chapter 2

Accuracy and Precision, continued

Sample Problem C Solution ,

Percentage error $=\frac{\text { Value }_{\text {experimental }}-\text { Value }_{\text {acceppted }}}{\text { Value }_{\text {acceppled }}} \times 100$

$$
=\frac{1.40 \mathrm{~g} / \mathrm{mL}-1.30 \mathrm{~g} / \mathrm{mL}}{1.30 \mathrm{~g} / \mathrm{mL}} \times 100=7.7 \%
$$

Chapter 2

Accuracy and Precision, continued

Error in Measurement ,

- Some error or uncertainty always exists in any measurement.
- skill of the measurer -
- conditions of measurement
- measuring instruments

Chapter 2

Significant Figures .

- Significant figures in a measurement consist of all the digits known with certainty plus one final digit, which is somewhat uncertain or is estimated.
- The term significant does not mean certain.

Chapter 2

Section 3 Using Scientific Measurements

Reporting Measurements Using Significant Figures

Chapter 2

Significant Figures, continued Determining the Number of Significant Figures

Rule

Examples

1. Zeros appearing between nonzero digits
a. 40.7 L has three significant figures. are significant.
b. 87009 km has five significant figures.
2. Zeros appearing in front of all nonzero digits
a. 0.095897 m has five significant figures. are not significant.
b. 0.0009 kg has one significant figure.
3. Zeros at the end of a number and to the
a. 85.00 g has four significant figures. right of a decimal point are significant.
b. 9.000000000 mm has 10 significant figures.
4. Zeros at the end of a number but to the left of a decimal point may or may not be significant. If a zero has not been measured or estimated but is just a placeholder, it is not significant. A decimal point placed after zeros indicates that they are significant.
a. 2000 m may contain from one to four significant figures, depending on how many zeros are placeholders. For measurements given in this text, assume that 2000 m has one significant figure.
b. $2000 . \mathrm{m}$ contains four significant figures, indicated by the presence of the decimal point.

Chapter 2

Section 3 Using Scientific Measurements

Significant Figures

Click below to watch the Visual Concept.

Visual Concept

Chapter 2

Section 3 Using Scientific Measurements

Rules for Determining Significant Zeros

Click below to watch the Visual Concept.

Visual Concept

Chapter 2

Significant Figures, continued Sample Problem D v

How many significant figures are in each of the following measurements?
a. 28.6 g -
b. $3440 . \mathrm{cm}$,
c. 910 m ,
d. 0.04604 L -
e. 0.0067000 kg

Chapter 2

Significant Figures, continued Sample Problem D Solution

a. 28.6 g -

There are no zeros, so all three digits are significant. -
b. 3440 . cm

By rule 4, the zero is significant because it is immediately followed by a decimal point; there are 4 significant figures. .
c. 910 m マ

By rule 4, the zero is not significant; there are 2 significant figures.

Chapter 2

Significant Figures, continued Sample Problem D Solution, continued

d. 0.04604 L ,

By rule 2, the first two zeros are not significant; by rule 1, the third zero is significant; there are 4 significant figures.
e. 0.0067000 kg ,

By rule 2, the first three zeros are not significant; by rule 3, the last three zeros are significant; there are 5 significant figures.

Chapter 2

Significant Figures, continued Rounding

If the digit following the last digit to be retained is:	Example (rounded to three significant figures)	
greater than 5	be increased by 1	$42.68 \mathrm{~g} \longrightarrow 42.7 \mathrm{~g}$
less than 5	stay the same	$17.32 \mathrm{~m} \longrightarrow 17.3 \mathrm{~m}$
5 , followed by nonzero digit(s)	be increased by 1	$2.7851 \mathrm{~cm} \longrightarrow 2.79 \mathrm{~cm}$
5, not followed by nonzero digit(s), and preceded by an odd digit	be increased by 1	$4.635 \mathrm{~kg} \longrightarrow 4.64 \mathrm{~kg}$ (because 3 is odd)
5, not followed by nonzero digit(s), and the preceding significant digit is even	stay the same	$78.65 \mathrm{~mL} \longrightarrow 78.6 \mathrm{~mL}$ (because 6 is even)

Chapter 2

Section 3 Using Scientific Measurements

Significant Figures, continued

Addition or Subtraction with Significant Figures

- When adding or subtracting decimals, the answer must have the same number of digits to the right of the decimal point as there are in the measurement having the fewest digits to the right of the decimal point. -

Addition or Subtraction with Significant Figures

- For multiplication or division, the answer can have no more significant figures than are in the measurement with the fewest number of significant figures.

Chapter 2

Significant Figures, continued

Sample Problem E .

Carry out the following calculations. Express each answer to the correct number of significant figures. -
a. $\quad 5.44 \mathrm{~m}-2.6103 \mathrm{~m}$.
b. $2.4 \mathrm{~g} / \mathrm{mL} \times 15.82 \mathrm{~mL}$

Chapter 2

Significant Figures, continued

Sample Problem E Solution ,

a. $5.44 \mathrm{~m}-2.6103 \mathrm{~m}=2.84 \mathrm{~m}$

There should be two digits to the right of the decimal point, to match 5.44 m . v
b. $2.4 \mathrm{~g} / \mathrm{mL} \times 15.82 \mathrm{~mL}=38 \mathrm{~g}$

There should be two significant figures in the answer, to match $2.4 \mathrm{~g} / \mathrm{mL}$.

Chapter 2

Section 3 Using Scientific Measurements

Significant Figures, continued Conversion Factors and Significant Figures .

- There is no uncertainty exact conversion factors. .
- Most exact conversion factors are defined quantities.

Chapter 2

Scientific Notation .

- In scientific notation, numbers are written in the form $\mathrm{M} \times 10^{\text {n }}$, where the factor M is a number greater than or equal to 1 but less than 10 and n is a whole number.
- example: $0.00012 \mathrm{~mm}=1.2 \times 10^{-4} \mathrm{~mm}$ マ
- Move the decimal point four places to the right and multiply the number by 10^{-4}.

Chapter 2

Scientific Notation, continued .

1. Determine M by moving the decimal point in the original number to the left or the right so that only one nonzero digit remains to the left of the decimal point. .
2. Determine n by counting the number of places that you moved the decimal point. If you moved it to the left, n is positive. If you moved it to the right, n is negative.

Chapter 2

Scientific Notation, continued

Mathematical Operations Using Scientific Notation

1. Addition and subtraction - These operations can be performed only if the values have the same exponent (n factor). -
example: $4.2 \times 10^{4} \mathrm{~kg}+7.9 \times 10^{3} \mathrm{~kg}$,

$$
\begin{aligned}
& 4.2 \times 10^{4} \mathrm{~kg} \\
&+0.79 \times 10^{4} \mathrm{~kg}
\end{aligned} \quad \text { or } \quad \begin{aligned}
& 7.9 \times 10^{3} \mathrm{~kg} \\
& \hline 4.99 \times 10^{4} \mathrm{~kg}
\end{aligned} \quad \begin{aligned}
& 42 \times 10^{3} \mathrm{~kg} \\
& 49.9 \times 10^{3} \mathrm{~kg}
\end{aligned}
$$

rounded to $5.0 \times 10^{4} \mathrm{~kg} \quad$ rounded to $5.0 \times 10^{4} \mathrm{~kg}$

Chapter 2

Scientific Notation, continued

Mathematical Operations Using Scientific Notation ,
2. Multiplication -The M factors are multiplied, and the exponents are added algebraically.

$$
\begin{aligned}
& \text { example: }\left(5.23 \times 10^{6} \mu \mathrm{~m}\right)\left(7.1 \times 10^{-2} \mu \mathrm{~m}\right) \\
& =(5.23 \times 7.1)\left(10^{6} \times 10^{-2}\right) \\
& =37.133 \times 10^{4} \mu \mathrm{~m}^{2} \\
& =3.7 \times 10^{5} \mu \mathrm{~m}^{2}
\end{aligned}
$$

Chapter 2

Scientific Notation, continued

Mathematical Operations Using Scientific Notation,
3. Division - The M factors are divided, and the exponent of the denominator is subtracted from that of the numerator.

$$
\text { example: } \quad \frac{5.44 \times 10^{7} \mathrm{~g}}{8.1 \times 10^{4} \mathrm{~mol}}
$$

$=\frac{5.44}{8.1} \times 10^{7-4} \mathrm{~g} / \mathrm{mol}$.
$=0.6716049383 \times 10^{3}$
$=6.7 \times 10^{2} \mathrm{~g} / \mathrm{mol}$

Chapter 2

Using Sample Problems

- Analyze .

The first step in solving a quantitative word problem is to read the problem carefully at least twice and to analyze the information in it. .

- Plan

The second step is to develop a plan for solving the problem. v

- Compute

The third step involves substituting the data and necessary conversion factors into the plan you have developed.

Chapter 2

Using Sample Problems, continued

- Evaluate

Examine your answer to determine whether it is reasonable. -

1. Check to see that the units are correct. \checkmark
2. Make an estimate of the expected answer. -
3. Check the order of magnitude in your answer. -
4. Be sure that the answer given for any problem is expressed using the correct number of significant figures.

Chapter 2

Using Sample Problems, continued

Sample Problem F V

Calculate the volume of a sample of aluminum that has a mass of 3.057 kg . The density of aluminum is $2.70 \mathrm{~g} / \mathrm{cm} 3$.

Chapter 2

Using Sample Problems, continued Sample Problem F Solution

1. Analyze ,

Given: mass $=3.057 \mathrm{~kg}$, density $=2.70 \mathrm{~g} / \mathrm{cm} 3$ v Unknown: volume of aluminum
2. Plan

The density unit is $\mathrm{g} / \mathrm{cm} 3$, and the mass unit is kg . v conversion factor: $1000 \mathrm{~g}=1 \mathrm{~kg}$ -
Rearrange the density equation to solve for volume. v

$$
D=\frac{m}{V} \quad \Rightarrow \quad V=\frac{m}{D}
$$

Chapter 2

Using Sample Problems, continued

Sample Problem F Solution, continued -
3. Compute -

$$
V=\frac{3.057 \mathrm{~kg}}{2.70 \mathrm{~g} / \mathrm{cm}^{3}} \times \frac{1000 \mathrm{~g}}{\mathrm{~kg}}
$$

$=1132.222 \ldots \mathrm{~cm}^{3}$ (calculator answer) -
round answer to three significant figures \vee

$$
V=1.13 \times 10^{3} \mathrm{~cm}^{3}
$$

Chapter 2

Using Sample Problems, continued

 Sample Problem F Solution, continued -4. Evaluate -

Answer: $V=1.13 \times 10^{3} \mathrm{~cm}^{3}$,

- The unit of volume, cm^{3}, is correct. .
- An order-of-magnitude estimate would put the answer at over $1000 \mathrm{~cm}^{3}$.

$$
\frac{3}{2} \times 1000
$$

- The correct number of significant figures is three, which matches that in $2.70 \mathrm{~g} / \mathrm{cm}$.

Chapter 2

Direct Proportions •

- Two quantities are directly proportional to each other if dividing one by the other gives a constant value. -
- $y \propto x$
- read as " y is proportional to x."

Chapter 2

Section 3 Using Scientific Measurements

Direct Proportion

Mass vs. Volume of Aluminum

54.4	20.1	2.70
65.7	24.15	2.72
83.5	30.9	2.70
97.2	35.8	2.71
105.7	39.1	2.70

Chapter 2

Inverse Proportions .

- Two quantities are inversely proportional to each other if their product is constant. -
- $y \propto \frac{1}{x}$
- read as " y is proportional to 1 divided by x ."

Chapter 2

 Measurements
Inverse Proportion

Pressure-Volume Data for Nitrogen at Constant Temperature		
Pressure (kPa)	Volume (cm $\left.{ }^{\mathbf{3}}\right)$	$P \times V$
100	500	50000
150	333	49500
200	250	50000
250	200	50000
300	166	49800
350	143	50500
400	125	50000
450	110	49500

