Chapter 9

Preview

- Lesson Starter
- Objective
- Stoichiometry Definition
- Reaction Stoichiometry Problems
- Mole Ratio
- Stoichiometry Calculations

Chapter 9

Lesson Starter v

$$
\mathrm{Mg}(s)+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

- If 2 mol of HCl react, how many moles of H_{2} are obtained?
- How many moles of Mg will react with 2 mol of HCl ?
- If 4 mol of HCl react, how many mol of each product are produced?
- How would you convert from moles of substances to masses?

Chapter 9

Objective .

- Define stoichiometry. .
- Describe the importance of the mole ratio in stoichiometric calculations. .
- Write a mole ratio relating two substances in a chemical equation.

Chapter 9

Stoichiometry Definition v

- Composition stoichiometry deals with the mass relationships of elements in compounds.
- Reaction stoichiometry involves the mass relationships between reactants and products in a chemical reaction.

Chapter 9

Section 1 Introduction to Stoichiometry

Stoichiometry

Click below to watch the Visual Concept.

Visual Concept

Chapter 9

Section 1 Introduction to Stoichiometry

Reaction Stoichiometry Problems v

Problem Type 1: Given and unknown quantities are amounts in moles.

Amount of given
substance (mol) v

Amount of unknown substance (mol) \downarrow

Problem Type 2: Given is an amount in moles and unknown is a mass v

Amount of given
substance (mol) v

Amount of unknown substance (mol) v

Mass of unknown substance (g)

Chapter 9

Section 1 Introduction to Stoichiometry

Reaction Stoichiometry Problems, continued v

Problem Type 3: Given is a mass and unknown is an amount in moles. -

Mass of given
substance (g) >

Amount of given substance (mol) >

Amount of unknown substance (mol) v

Problem Type 4: Given is a mass and unknown is a mass.

Mass of a given substance (g) $\mathbf{~}$

Amount of given substance (mol) $>$

Amount of unknown substance (mol) マ Mass of unknown substance (g)

Chapter 9

Mole Ratio v

- A mole ratio is a conversion factor that relates the amounts in moles of any two substances involved in a chemical reaction

Example: $\quad 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{I}) \rightarrow 4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$ v

Mole Ratios: $\frac{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{4 \mathrm{~mol} \mathrm{Al}}, \frac{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{3 \mathrm{~mol} \mathrm{O}_{2}}, \frac{4 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{O}_{2}}$

Chapter 9

Converting Between Amounts in Moles

1. Identify the amount in moles that you know from the problem.
2. Using coefficients from the balanced equation, set up the mole ratio with the known substance on bottom and the unknown substance on top.
3. Multiply the original amount by the mole ratio.

Chapter 9

Section 1 Introduction to Stoichiometry

Stoichiometry Calculations

© HOLT, RINEHART AND WINSTON, All Rights Reserved

Chapter 9

Section 1 Introduction to Stoichiometry

Molar Mass as a Conversion Factor

Click below to watch the Visual Concept.

Visual Concept

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Preview

- Lesson Starter
- Objective
- Conversions of Quantities in Moles
- Conversions of Amounts in Moles to Mass
- Mass-Mass to Calculations
- Solving Various Types of Stoichiometry Problems

Chapter 9

Lesson Starter v

Acid-Base Neutralization Reaction Demonstration v

- What is the equation for the reaction of HCl with NaOH ?
- What is the mole ratio of HCl to NaOH ?

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Objective

- Calculate the amount in moles of a reactant or a product from the amount in moles of a different reactant or product. -
- Calculate the mass of a reactant or a product from the amount in moles of a different reactant or product.

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Objectives, continued .

- Calculate the amount in moles of a reactant or a product from the mass of a different reactant or product. -
- Calculate the mass of a reactant or a product from the mass of a different reactant or product.

Chapter 9

Conversions of Quantities in Moles

Mole ratio
(Balanced equation)
Amount of given
substance (mol)

GIVEN IN
Mole ratio
(Balanced equation)
$\times \frac{\text { mol unknown }}{\text { mol given }}=$
CONVERSION FACTOR

Amount of unknown
substance (mol)

CALCULATED

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Conversion of Quantities in Moles

Click below to watch the Visual Concept.

Visual Concept

Section 2 Ideal Stoichiometric Calculations

Solving Mass-Mass Stoichiometry Problems

Chapter 9

Conversions of Quantities in Moles, continued

Sample Problem A •

In a spacecraft, the carbon dioxide exhaled by astronauts can be removed by its reaction with lithium hydroxide, LiOH, according to the following chemical equation.

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{LiOH}(\mathrm{~s}) \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

How many moles of lithium hydroxide are required to react with $20 \mathrm{~mol} \mathrm{CO}_{2}$, the average amount exhaled by a person each day?

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Conversions of Quantities in Moles, continued

Sample Problem A Solution

$$
\mathrm{CO}_{2}(g)+2 \mathrm{LiOH}(\mathrm{~s}) \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Given: amount of $\mathrm{CO}_{2}=20 \mathrm{~mol} \vee$
Unknown: amount of LiOH (mol) v
Solution:

$$
\mathrm{mol} \mathrm{CO}_{2} \times \frac{\begin{array}{c}
\mathrm{mol} \text { ratio } \\
\mathrm{mol} \mathrm{LiOH}
\end{array}}{\mathrm{~mol} \mathrm{CO}_{2}}=\mathrm{mol} \mathrm{LiOH}
$$

$$
20 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{LiOH}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=40 \mathrm{~mol} \mathrm{LiOH}
$$

Chapter 9

Conversions of Amounts in Moles to Mass

Chapter 9

Start here if amount is given in grams.
mass of substance given
$\times \frac{1 \text { mole }}{\text { molar mass }}$
$\times \overline{\text { molar mass }}$

Start here if amount is given in moles.

moles of
substance
given

\times mole ratio
from balanced
equation
moles of
substance
sought
$\times \frac{\text { molar mass }}{1 \text { mole }}$
mass of substance sought

Solving Stoichiometry Problems with Moles or Grams

Chapter 9

Conversions of Amounts in Moles to Mass, continued

Sample Problem B •

In photosynthesis, plants use energy from the sun to produce glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, and oxygen from the reaction of carbon dioxide and water. v

What mass, in grams, of glucose is produced when 3.00 mol of water react with carbon dioxide?

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Conversions of Amounts in Moles to Mass, continued
Sample Problem B Solution
Given: amount of $\mathrm{H}_{2} \mathrm{O}=3.00 \mathrm{~mol}, ~$
Unknown: mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ produced (g) v
Solution: -
Balanced Equation: $6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \vee$

$$
\begin{gathered}
\text { mol ratio } \\
\mathrm{mol} \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{\mathrm{~mol} \mathrm{mass} \mathrm{factor}_{2} \mathrm{O}} \times \frac{\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
\end{gathered}
$$

$3.00 \mathrm{~mol} \mathrm{H} 2 \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=$

$$
90.1 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

Chapter 9

Section 2 Ideal Stoichiometric

Calculations

Conversions of Mass to Amounts in Moles

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Mass and Number of Moles of an Unknown

Click below to watch the Visual Concept.

Visual Concept

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Conversions of Mass to Amounts in Moles, continued

Sample Problem D v

The first step in the industrial manufacture of nitric acid is the catalytic oxidation of ammonia. -
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ (unbalanced) $>$

The reaction is run using $824 \mathrm{~g} \mathrm{NH}_{3}$ and excess oxygen.
a. How many moles of NO are formed?
b. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are formed?

Chapter 9

Section 2 Ideal Stoichiometric

Conversions of Mass to Amounts in Moles, continued Sample Problem D Solution v
Given: mass of $\mathrm{NH}_{3}=824 \mathrm{~g} \nabla$
Unknown: a. amount of NO produced (mol) v
b. amount of $\mathrm{H}_{2} \mathrm{O}$ produced (mol) -

Solution: v
Balanced Equation: $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ >
a. $\mathrm{g} \mathrm{NH}_{3} \times \frac{\mathrm{mol} \mathrm{NH}_{3}}{\mathrm{~g} \mathrm{NH}_{3}} \times \frac{\mathrm{mol} \mathrm{NO}}{\mathrm{mol} \mathrm{NH}_{3}}=\mathrm{mol} \mathrm{NO}$
b. $\mathrm{g} \mathrm{NH}_{3} \times \frac{\mathrm{mol} \mathrm{NH}_{3}}{\mathrm{~g} \mathrm{NH}_{3}} \times \frac{\mathrm{mol} \mathrm{H}_{2} \mathrm{O}}{\mathrm{mol} \mathrm{NH}_{3}}=\mathrm{mol} \mathrm{H}_{2} \mathrm{O}$

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Conversions of Mass to Amounts in Moles, continued
Sample Problem D Solution, continued マ
molar mass factor mol ratio
a. $824 \mathrm{~g} \mathrm{NH}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.04 \mathrm{~g} \mathrm{NH}_{3}} \times \frac{4 \mathrm{~mol} \mathrm{NO}^{4 \mathrm{~mol} \mathrm{NH}_{3}}}{=48.4 \mathrm{~mol} \mathrm{NO}}$
b. $824 \mathrm{~g} \mathrm{NH}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.04 \mathrm{~g} \mathrm{NH}_{3}} \times \frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{NH}_{3}}=72.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Mass-Mass to Calculations

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Mass-Mass Calculations

Click below to watch the Visual Concept.

Visual Concept

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Solving Mass-Mass Problems

Chapter 9

Section 2 Ideal Stoichiometric Calculations

Mass-Mass to Calculations, continued

Sample Problem E v

Tin(II) fluoride, SnF_{2}, is used in some toothpastes. It is made by the reaction of tin with hydrogen fluoride according to the following equation.

$$
\mathrm{Sn}(\mathrm{~s})+2 \mathrm{HF}(g) \rightarrow \mathrm{SnF}_{2}(\mathrm{~s})+\mathrm{H}_{2}(g) \vee
$$

How many grams of SnF_{2} are produced from the reaction of 30.00 g HF with Sn ?

Chapter 9

Mass-Mass to Calculations, continued

Sample Problem E Solution \checkmark
Given: amount of $\mathrm{HF}=30.00 \mathrm{~g}$,
Unknown: mass of SnF_{2} produced $(\mathrm{g}) ~ \vee$ Solution: -

$$
\begin{gathered}
\begin{array}{c}
\text { molar mass factor } \\
\mathrm{g} \mathrm{HF} \times \frac{\text { mol ratio }}{\mathrm{mol} \mathrm{HF}}
\end{array} \times \frac{\mathrm{mol} \mathrm{SnF}_{2}}{\mathrm{~mol} \mathrm{HF}} \times \frac{\mathrm{g} \mathrm{SnF}_{2}}{\mathrm{~mol} \mathrm{SnF}} \\
\mathrm{~g} \mathrm{HF} \times \frac{1 \mathrm{~mol} \mathrm{HF}}{20.01 \mathrm{~g} \mathrm{HF}} \times \frac{1 \mathrm{~mol} \mathrm{SnF}_{2}}{2 \mathrm{~mol} \mathrm{HF}} \times \frac{156.71 \mathrm{~g} \mathrm{SnF}_{2}}{1 \mathrm{~mol} \mathrm{SnF}_{2}} \\
=117.5 \mathrm{~g} \mathrm{SnF}_{2}
\end{gathered}
$$

Solving Various Types of Stoichiometry Problems

> volume of
> substance
> given
> (units: mL)
amount of
substance given (units: formula units or molecules)

$$
\begin{aligned}
& \text { mass of } \\
& \text { substance } \\
& \text { given } \\
& \text { (units: g) }
\end{aligned}
$$

amount of substance given (units: mol)
\times mole ratio from
balanced equation

Chapter 9

Solving Various Types of Stoichiometry Problems

amount of
substance
sought
(units: mol)

$$
\times \frac{6.022 \times 10^{23}}{1 \mathrm{~mole}}
$$

$\times \frac{\text { molar mass }}{1 \text { mole }}$
mass of
substances
sought
(units: \mathbf{g})

amount of substance sought (units: formula units or molecules)
volume of substance sought (units: $\mathbf{m L}$)

Chapter 9

Chapter 9

Solving Particle Problems

Chapter 9

Section 3 Limiting Reactants and Percentage Yield

Preview

- Objectives
- Limiting Reactants
- Percentage Yield

Chapter 9

Section 3 Limiting Reactants and Percentage Yield

Objectives .

- Describe a method for determining which of two reactants is a limiting reactant. -
- Calculate the amount in moles or mass in grams of a product, given the amounts in moles or masses in grams of two reactants, one of which is in excess. v
- Distinguish between theoretical yield, actual yield, and percentage yield. -
- Calculate percentage yield, given the actual yield and quantity of a reactant.

Chapter 9

Limiting Reactants .

- The limiting reactant is the reactant that limits the amount of the other reactant that can combine and the amount of product that can form in a chemical reaction.
- The excess reactant is the substance that is not used up completely in a reaction.

Chapter 9

Section 3 Limiting Reactants and Percentage Yield

Limiting Reactants and Excess Reactants

Click below to watch the Visual Concept.

Visual Concept

Chapter 9

 Percentage Yield
Limited Reactants, continued

Sample Problem F v

Silicon dioxide (quartz) is usually quite unreactive but reacts readily with hydrogen fluoride according to the following equation. .
$\mathrm{SiO}_{2}(\mathrm{~s})+4 \mathrm{HF}(\mathrm{g}) \rightarrow \mathrm{SiF}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})-$

If 6.0 mol HF is added to $4.5 \mathrm{~mol}_{\mathrm{SiO}_{2}}$, which is the limiting reactant?

Chapter 9

Section 3 Limiting Reactants and Percentage Yield

Limited Reactants, continued

Sample Problem F Solution

$$
\mathrm{SiO}_{2}(\mathrm{~s})+4 \mathrm{HF}(\mathrm{~g}) \rightarrow \mathrm{SiF}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Given: amount of $\mathrm{HF}=6.0 \mathrm{~mol}$ amount of $\mathrm{SiO}_{2}=4.5 \mathrm{~mol} \checkmark$
Unknown: limiting reactant \downarrow
Solution:
$\mathrm{mol} \mathrm{HF} \times \frac{\mathrm{mol} \mathrm{SiF}_{4}}{\mathrm{~mol} \mathrm{HF}^{2}}=\mathrm{mol} \mathrm{SiF}_{4}$ produced
$\mathrm{mol} \mathrm{SiO}_{2} \times \frac{\mathrm{mol} \mathrm{SiF}_{4}}{\mathrm{~mol} \mathrm{SiO}_{2}}=\mathrm{mol} \mathrm{SiF}_{4}$ produced

Chapter 9

Section 3 Limiting Reactants and Percentage Yield

Limited Reactants, continued

Sample Problem F Solution, continued \checkmark

$$
\mathrm{SiO}_{2}(\mathrm{~s})+4 \mathrm{HF}(\mathrm{~g}) \rightarrow \mathrm{SiF}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$4.5 \mathrm{~mol} \mathrm{SiO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{SiF}_{4}}{1 \mathrm{~mol} \mathrm{SiO}_{2}}=4.5 \mathrm{~mol} \mathrm{SiF}_{4}$ produced $6.0 \mathrm{~mol} \mathrm{HF} \times \frac{1 \mathrm{~mol} \mathrm{SiF}_{4}}{4 \mathrm{~mol} \mathrm{HF}^{2}}=1.5 \mathrm{~mol} \mathrm{SiF}_{4}$ produced

HF is the limiting reactant.

Chapter 9

 Percentage Yield
Percentage Yield v

- The theoretical yield is the maximum amount of product that can be produced from a given amount of reactant. -
- The actual yield of a product is the measured amount of that product obtained from a reaction. v
- The percentage yield is the ratio of the actual yield to the theoretical yield, multiplied by 100 . -

$$
\text { percentage yield }=\frac{\text { actual yield }}{\text { theorectical yield }} \times 100
$$

Chapter 9

Comparing Actual and Theoretical Yield

Click below to watch the Visual Concept.

Visual Concept

Chapter 9

Percentage Yield, continued

Sample Problem H .

Chlorobenzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CI}$, is used in the production of many important chemicals, such as aspirin, dyes, and disinfectants. One industrial method of preparing chlorobenzene is to react benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, with chlorine, as represented by the following equation. .

$$
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{I})+\mathrm{HCl}(\mathrm{~g}) ~ v
$$

When $36.8 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}$ react with an excess of Cl 2 , the actual yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ is 38.8 g . -
What is the percentage yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$?

Chapter 9

Percentage Yield, continued
Sample Problem H Solution

$$
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{I})+\mathrm{HCl}(\mathrm{~g}) ~ v
$$

Given: mass of $\mathrm{C}_{6} \mathrm{H}_{6}=36.8 \mathrm{~g}$
mass of $\mathrm{Cl}_{2}=$ excess
actual yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}=38.8 \mathrm{~g}$,
Unknown: percentage yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$,
Solution: v
Theoretical yield \checkmark

$$
\begin{aligned}
& \text { molar mass factor mol ratio molar mass } \\
& \mathrm{g} \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{6}}{\mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}} \times \frac{\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}}{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}} \times \frac{\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}}{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}}=\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}
\end{aligned}
$$

Chapter 9

Percentage Yield, continued

Sample Problem H Solution, continued $>$

$$
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{I})+\mathrm{HCl}(\mathrm{~g})-
$$

Theoretical yield \checkmark
$36.8 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}}{78.12 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}} \times \frac{112.56 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}}$

$$
=53.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}
$$

Percentage yield \checkmark
percentage yield $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}=\frac{\text { actual yield }}{\text { theorectical yield }} \times 100$
percentage yield $=\frac{38.8 \mathrm{~g}}{53.0 \mathrm{~g}} \times 100=73.2 \%$

End of Chapter 9 Show

