Preview

- Lesson Starter
- <u>Objectives</u>
- <u>Acids</u>
- Bases
- Arrhenius Acids and Bases

© HOLT, RINEHART AND WINSTON, All Rights Reserved

< Back

Next >

Preview n

Main 🏫

Section 1 Properties of Acids and Bases

Lesson Starter 🖕

- The solutions in the beakers are different because they have a different pH.
- One beaker contains a basic solution and the other beaker contains an acidic solution

Of Slida

Main 🗖

Next >

< Back

Preview n

End Of Slide

Main 🗖

Objectives 🖕

- List five general properties of aqueous acids and bases.
- Name common binary acids and oxyacids, given their chemical formulas.
- List five acids commonly used in industry and the laboratory, and give two properties of each.
- Define acid and base according to Arrhenius' s theory of ionization.
- Explain the differences between strong and weak acids and bases.

Section 1 Properties of Acids and Bases

Next >

< Back

Preview n

Main 🗖

Acids -

Chapter 14

- 1. Aqueous solutions of acids have a sour taste. -
- 2. Acids change the color of acid-base indicators. -
- Some acids react with active metals and release hydrogen gas, H₂.
 Ba(s) + H₂SO₄(aq) → BaSO₄(s) + H₂(g)
- 4. Acids react with bases to produce salts and water. -
- 5. Acids conduct electric current.

Section 1 Properties of Acids and Bases

Preview **n**

Main 🏚

Properties of Acids

Click below to watch the Visual Concept.

< Back

Next >

Next >

< Back

Preview n

Enc

Of

Main 🗖

Acids, *continued* Acid Nomenclature -

- A binary acid is an acid that contains only two different elements: hydrogen and one of the more electronegative elements.
 - HF, HCI, HBr, and HI -
- Binary Acid Nomenclature -
 - The name of a binary acid begins with the prefix hydro-. -
 - 2. The root of the name of the second element follows this prefix. -
 - 3. The name then ends with the suffix -ic.

Section 1 Properties of Acids and Bases

Acids, continued Acid Nomenclature, continued

Formula	Acid name	
HF	hydrofluoric acid	
HCl	hydrochloric acid	
HBr	hydrobromic acid	
HI	hydriodic acid	
H_2S	hydrosulfuric acid	
		Enc of Slid

< Back

Next >

Preview n

Main 🏚

Next >

Preview n

Main 🗖

< Back

Acids, continued Acid Nomenclature, continued -

- An oxyacid is an acid that is a compound of hydrogen, oxygen, and a third element, usually a nonmetal.
 - HNO₃, H₂SO₄ –
- The names of oxyacids follow a pattern.
- The names of their anions are based on the names of the acids.

Section 1 Properties of Acids and Bases

End Of Slide

Main 🏫

Preview n

Acids, continued Acid Nomenclature, continued

Formula	Acid name	Anion
CH ₃ COOH	acetic acid	CH ₃ COO⁻, acetate
H_2CO_3	carbonic acid	CO ₃ ²⁻ , carbonate
HIO_3	iodic acid	IO ₃ , iodate
HCIO	hypochlorous acid	ClO ⁻ , hypochlorite
HCIO ₂	chlorous acid	ClO ₂ , chlorite
HClO ₃	chloric acid	ClO ₃ , chlorate
HClO ₄	perchloric acid	ClO ₄ , perchlorate
HNO ₂	nitrous acid	NO ₂ , nitrite
HNO_3	nitric acid	NO ₃ , nitrate
H_3PO_3	phosphorous acid	PO ₃ ^{3–} , phosphite
H_3PO_4	phosphoric acid	PO ₄ ^{3–} , phosphate
H_2SO_3	sulfurous acid	SO ₃ ^{2–} , sulfite
H_2SO_4	sulfuric acid	SO ₄ ^{2–} , sulfate

< Back

Next >

Section 1 Properties of Acids and Bases

< Back

Next >

Preview n

Main 🏚

Naming Oxyacids

Click below to watch the Visual Concept.

Section 1 Properties of Acids and Bases

Some Common Industrial Acids

Sulfuric Acid -

Chapter 14

- Sulfuric acid is the most commonly produced industrial chemical in the world.
- Nitric Acid -
- Phosphoric Acid
- Hydrochloric Acid
 - Concentrated solutions of hydrochloric acid are commonly referred to as *muriatic acid*.
- Acetic Acid
 - Pure acetic acid is a clear, colorless, and pungent-smelling liquid known as glacial acetic acid.

< Back

Next >

Preview n

End Of

Main 🗖

Section 1 Properties of Acids and Bases

Next >

Preview n

< Back

Of Slide

Main 🗖

Bases

Chapter 14

- 1. Aqueous solutions of bases taste bitter. -
- 2. Bases change the color of acid-base indicators. -
- 3. Dilute aqueous solutions of bases feel slippery. -
- 4. Bases react with acids to produce salts and water. -
- 5. Bases conduct electric current.

Section 1 Properties of Acids and Bases

< Back

Next >

Preview n

Main 🏚

Properties of Bases

Click below to watch the Visual Concept.

Preview n

Main 🗖

Arrhenius Acids and Bases 🖕

- An Arrhenius acid is a chemical compound that increases the concentration of hydrogen ions, H⁺, in aqueous solution.
- An Arrhenius base is a substance that increases the concentration of hydroxide ions, OH⁻, in aqueous solution.

< Back

Next >

Section 1 Properties of Acids and Bases

< Back

Next >

Preview **n**

Main 🕇

Arrhenius Acids and Bases

Click below to watch the Visual Concept.

Section 1 Properties of Acids and Bases

Arrhenius Acids and Bases, *continued* Aqueous Solutions of Acids -

- Arrhenius acids are molecular compounds with ionizable hydrogen atoms.
- Their water solutions are known as aqueous acids.
- All aqueous acids are electrolytes.

© HOLT, RINEHART AND WINSTON, All Rights Reserved

Chapter 14

< Back

Next >

End Of Slide

Main 🕇

Preview **n**

Arrhenius Acids and Bases, continued Aqueous Solutions of Acids, continued

Common Aqueous Acids

Weak acids	
$\mathrm{HSO}_4^- + \mathrm{H_2O}$	$\overleftarrow{\longrightarrow} H_3O^+ + SO_4^{2-}$
$H_3PO_4 + H_2O$	$\overleftarrow{\longleftarrow} H_3O^+ + H_2PO_4^-$
$\mathrm{HF} + \mathrm{H_2O}$	$\overleftarrow{\longleftarrow} H_3O^+ + F^-$
$CH_3COOH + H_2COOH + H_2$	$O \longleftrightarrow H_3O^+ + CH_3COO^-$
$\mathrm{H_{2}CO_{3}+H_{2}O}$	$\overleftarrow{\longleftarrow} H_3O^+ + HCO_3^-$
$\mathrm{H_2S} + \mathrm{H_2O}$	$\overleftarrow{\longleftarrow} H_3O^+ + HS^-$
$\mathrm{HCN} + \mathrm{H_2O}$	$\overleftarrow{\longleftarrow} H_3O^+ + CN^-$
$\mathrm{HCO}_{3}^{-} + \mathrm{H_{2}O}$	$\overrightarrow{\longrightarrow} H_3O^+ + CO_3^{2-}$
	Weak acids $HSO_4^- + H_2O$ $H_3PO_4 + H_2O$ $HF + H_2O$ $CH_3COOH + H_2O$ $H_2CO_3 + H_2O$ $H_2S + H_2O$ $HCN + H_2O$ $HCO_3^- + H_2O$

Section 1 Properties of Acids and Bases

En of

Slide

Main 🗖

Preview n

Next >

< Back

Arrhenius Acids and Bases, *continued* Strength of Acids -

- A strong acid is one that ionizes completely in aqueous solution.
 - a strong acid is a strong electrolyte
 - HCIO₄, HCI, HNO₃ •
- A weak acid releases few hydrogen ions in aqueous solution.
 - hydronium ions, anions, and dissolved acid molecules in aqueous solution
 - HCN -

Chapter 14

• Organic acids (—COOH), such as acetic acid

Section 1 Properties of Acids and Bases

Next >

< Back

Preview n

Main 🗖

Arrhenius Acids and Bases, *continued* Aqueous Solutions of Bases -

- Most bases are ionic compounds containing metal cations and the hydroxide anion, OH⁻.
 - dissociate in water

Chapter 14

 $NaOH(s) \xrightarrow{H_2O} Na^+(aq) + OH^-(aq)$

- Ammonia, NH₃, is molecular
 - Ammonia produces hydroxide ions when it reacts with water molecules.

 $NH_3(aq) + H_2O(I) \implies NH_4^+(aq) + OH^-(aq)$

Arrhenius Acids and Bases, *continued* Strength of Bases -

- The strength of a base depends on the extent to which the base dissociates.
- Strong bases are strong electrolytes

Strong bases	Weak bases	
$Ca(OH)_2 \longrightarrow Ca^{2+} + 2OH^{-}$	$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$	
$Sr(OH)_2 \longrightarrow Sr^{2+} + 2OH^{-}$	$C_6H_5NH_2 + H_2O \rightleftharpoons C_6H_5NH_3^+ + OH^-$	
$Ba(OH)_2 \longrightarrow Ba^{2+} + 2OH^-$		
$NaOH \longrightarrow Na^+ + OH^-$		
$\mathrm{KOH} \longrightarrow \mathrm{K}^{+} + \mathrm{OH}^{-}$		
$RbOH \longrightarrow Rb^+ + OH^-$		
$CsOH \longrightarrow Cs^+ + OH^-$		Slide

Section 1 Properties of Acids and Bases

Next >

< Back

Preview **n**

Main 🕇

Strength and Weakness of Acids and Bases

Click below to watch the Visual Concept.

© HOLT, RINEHART AND WINSTON, All Rights Reserved

Chapter 14

Section 1 Properties of Acids and Bases

Relationship of [H3O+] to [OH-]

Section 2 Acid-Base Theories

Preview n

Main 🏚

Next >

< Back

Preview

- Lesson Starter
- Objectives
- Brønsted-Lowry Acids and Bases
- Monoprotic and Polyprotic Acids
- Lewis Acids and Bases

Lesson Starter 💄

Chapter 14

- List three terms that describe the person in the photo.
- The person has been described in many different ways, but he or she is still the same person.
- Acids and bases also can be described differently based on the circumstances.

Next >

< Back

Objectives _

Chapter 14

 Define and recognize Brønsted-Lowry acids and bases.

Define a Lewis acid and a Lewis base.

 Name compounds that are acids under the Lewis definition but are not acids under the Brønsted-Lowry definition.

Of

< Back

Next >

Preview n

Main 🗖

Brønsted-Lowry Acids and Bases ,

- A Brønsted-Lowry acid is a molecule or ion that is a proton donor.
- Hydrogen chloride acts as a Brønsted-Lowry acid when it reacts with ammonia.

 $HCI + NH_3 \rightarrow NH_4^+ + CI^-$

Water can act as a Brønsted-Lowry acid.

 $H_2O(I) + NH_3(aq) \implies NH_4^+(aq) + OH^-(aq)$

Brønsted-Lowry Acids and Bases, continued _

 A Brønsted-Lowry base is a molecule or ion that is a proton acceptor.

 Ammonia accepts a proton from the hydrochloric acid. It acts as a Brønsted-Lowry base.

 $HCI + NH_3 \rightarrow NH_4^+ + CI^-$

Next >

< Back

Preview n

Main f

- The OH⁻ ion produced in solution by Arrhenius hydroxide bases (NaOH) is the Brønsted-Lowry base.
 - The OH⁻ ion can accept a proton

© HOLT, RINEHART AND WINSTON, All Rights Reserved

Chapter 14

< Back

Next >

Preview n

Main 🗖

Brønsted-Lowry Acids and Bases, continued _

 In a Brønsted-Lowry acid-base reaction, protons are transferred from one reactant (the acid) to another (the base).

© HOLT, RINEHART AND WINSTON, All Rights Reserved

Chapter 14

< Back

Next >

Preview n

Main 🕇

Brønsted-Lowry Acids and Bases

Click below to watch the Visual Concept.

< Back

Next >

Preview **n**

Main 🗖

Monoprotic and Polyprotic Acids 🖕

- A monoprotic acid is an acid that can donate only one proton (hydrogen ion) per molecule.
 - HCIO₄, HCI, HNO₃ –
 - only one ionization step

 $HCl(g) + H_2O(I) \rightarrow H_3O^+(aq) + Cl^-(aq)$

Section 2 Acid-Base Theories

Monoprotic and Diprotic Acids

Monoprotic and Polyprotic Acids, continued _

- A polyprotic acid is an acid that can donate more than one proton per molecule.
 - H₂SO₄, H₃PO₄

Chapter 14

- Multiple ionization steps
- (1) $H_2SO_4(I) + H_2O(I) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$
- (2) $HSO_4^-(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + SO_4^{2-}(I) \checkmark$

< Back

Eng

Of

Main 🗖

Preview n

Next >

• Sulfuric acid solutions contain H_3O^+ , HSO_4^- and SO_4^{2-} ions

Next >

< Back

Preview n

Main 🗖

- donate three protons per molecule. 🗸
 - H₃PO₄

Next >

< Back

Preview n

Main 🕇

Comparing Monoprotic and Polyprotic Acids

Click below to watch the Visual Concept.

Lewis Acids and Bases

- A Lewis acid is an atom, ion, or molecule that accepts an electron pair to form a covalent bond.
 - The Lewis definition is the broadest of the three acid definitions.
 - A bare proton (hydrogen ion) is a Lewis acid

 $H^+(aq) + : NH_3(aq) \rightarrow [H - NH_3]^+(aq) \text{ or } [NH_4]^+(aq)$

< Back

Next >

Main 🗖

Preview n

Lewis Acids and Bases, continued _

- The formula for a Lewis acid need not include hydrogen.
 - The silver ion can be a Lewis acid

 $Ag^{+}(aq) + 2: NH_{3}(aq) \rightarrow [H_{3}N - Ag - NH_{3}]^{+}(aq) \text{ or } [Ag(NH_{3})_{2}]^{+}$

 Any compound in which the central atom has three valence electrons and forms three covalent bonds can react as a Lewis acid.

$$\mathsf{BF}_3(aq) + \mathsf{F}^-(aq) \rightarrow \mathsf{BF}_4^-(aq)$$

Preview n

Main 🗖

Next >

< Back

< Back

Next >

Preview **n**

Main 🕇

Lewis Acids and Bases

Click below to watch the Visual Concept.

Section 2 Acid-Base Theories

< Back

Next >

End Of Slide

Main 🏚

Preview n

Lewis Acids and Bases, *continued* Acid Base Definitions

Туре	Acid	Base
Arrhenius	$\rm H^{+} or H_{3}O^{+} producer$	OH ⁻ producer
Brønsted-Lowry	proton (H^+) donor	proton (H^+) acceptor
Lewis	electron-pair acceptor	electron-pair donor

Section 2 Acid-Base Theories

Next >

< Back

Preview **n**

Main 🕇

Comparing Arrhenius, Brønsted-Lowry, and Lewis Acids and Bases

Click below to watch the Visual Concept.

Visual Concept

Section 3 Acid-Base Reactions

Preview n

Main 🏚

Next >

< Back

Preview

- Lesson Starter
- Objectives
- Conjugate Acids and Bases
- Amphoteric Compounds
- Neutralization Reactions
- Acid Rain

< Back

Next >

Lesson Starter

- What is the meaning of the word neutralization.
- How is the word used in everyday life? -
- How is it likely to apply to acids and bases?

Of

Objectives _

- Describe a conjugate acid, a conjugate base, and an amphoteric compound.
- Explain the process of neutralization.
- Define *acid rain*, give examples of compounds that can cause acid rain, and describe effects of acid rain.

< Back

Next >

Preview n

Main 🗖

Conjugate Acids and Bases 🖕

 The species that remains after a Brønsted-Lowry acid has given up a proton is the conjugate base of that acid.

$HF(aq) + H_2O(I) \iff F^-(aq) + H_3O^+(aq) \cdot$ acid base base

< Back

Next >

Preview n

Main 🗖

Section 3 Acid-Base Reactions

Conjugate Acids and Bases, continued

 Brønsted-Lowry acid-base reactions involve two acidbase pairs, known a conjugate acid-base pairs.

$HF(aq) + H_2O(I) \iff F^-(aq) + H_3O^+(aq) ,$ $acid_1 \qquad base_2 \qquad base_1 \qquad acid_2$ $f^-(aq) + H_3O^+(aq) ,$ $base_2 \qquad base_1 \qquad acid_2$ $f^-(aq) + H_3O^+(aq) ,$ $base_2 \qquad base_1 \qquad base_2 \qquad base_2 \qquad base_1 \qquad base_2 \qquad b$

Section 3 Acid-Base Reactions

Neutralization Reactions

Section 3 Acid-Base Reactions

Conjugate Acids and Bases, *continued* Strength of Conjugate Acids and Bases -

- The stronger an acid is, the weaker its conjugate base -
- The stronger a base is, the weaker its conjugate acid -

 $HCl(g) + H_2O(I) \rightarrow H_3O^+(aq) + Cl^-(aq) \rightarrow$ strong acid base acid weak base

< Back

Next >

Preview n

End Of Slide

Main 🗖

Chapter 14 Section 3 Acid-Base Reactions

Conjugate Acids and Bases, continued Strength of Conjugate Acids and Bases, continued Proton transfer reactions favor the production of the weaker acid and the weaker base. - $HClO_4(aq) + H_2O(I) \rightarrow H_3O^+(aq) + ClO_4^-(aq)$ stronger acid stronger base weaker acid weaker base 🚽 The reaction to the right is more favorable $CH_3COOH(aq) + H_2O(I) \leftarrow H_3O^+(aq) + CH_3COO^-(aq)$ weaker acid weaker base stronger acid stronger base - The reaction to the left is more favorable Next > Preview n Main f < Back

Section 3 Acid-Base Reactions

< Back

Next >

Preview n

Main 🕇

Conjugated Acids and Bases

Click below to watch the Visual Concept.

Section 3 Acid-Base Reactions

< Back

Relative Strengths of Acids and Bases

Relative Strengths of Acids and Bases

	Conjugate acid	Formula	Conjugate base	Formula
A	hydriodic acid*	HI	iodide ion	I-
	perchloric acid*	HClO ₄	perchlorate ion	ClO ₄
	hydrobromic acid*	HBr	bromide ion	Br [_]
	hydrochloric acid*	HCl	chloride ion	Cl-
	sulfuric acid*	H_2SO_4	hydrogen sulfate ion	HSO_4^-
	chloric acid*	HClO ₃	chlorate ion	ClO ₃
	nitric acid*	HNO_3	nitrate ion	NO ₃
	hydronium ion	$H_{3}O^{+}$	water	H ₂ O j
	chlorous acid	HClO ₂	chlorite ion	ClO ₂ bas
	hydrogen sulfate ion	HSO_4^-	sulfate ion	SO ₄ ²⁻
	phosphoric acid	H ₃ PO ₄	dihydrogen phosphate ion	H ₂ PO ₄
	hydrofluoric acid	HF	fluoride ion	F
ıgth	acetic acid	CH ₃ COOH	acetate ion	CH ₃ COO ⁻
stren	carbonic acid	H ₂ CO ₃	hydrogen carbonate ion	HCO ₃
cid	hydrosulfuric acid	H_2S	hydrosulfide ion	HS ⁻
ng a	dihydrogen phosphate ion	$H_2PO_4^-$	hydrogen phosphate ion	HPO ₄ ²⁻
easi	hypochlorous acid	HClO	hypochlorite ion	C10-
Incr	ammonium ion	NH_4^+	ammonia	NH ₃
	hydrogen carbonate ion	HCO_3^-	carbonate ion	CO ₃ ²⁻
	hydrogen phosphate ion	HPO_4^{2-}	phosphate ion	PO ₄ ³⁻
	water	H ₂ O	hydroxide ion	OH-
	ammonia	NH ₃	amide ion†	NH ₂
	hydrogen	H ₂	hydride ion†	H- ¥

* Strong acids † Strong bases

Next >

Preview n

End Of Slide

Main 🏚

Amphoteric Compounds 🖕

- Any species that can react as either an acid or a base is described as amphoteric.
 - example: water -
 - water can act as a base

 $\begin{array}{ccc} \mathsf{H}_2\mathsf{SO}_4(aq) + \mathsf{H}_2\mathsf{O}(I) \rightarrow \mathsf{H}_3\mathsf{O}^+(aq) + \mathsf{HSO}_4^-(aq) \\ acid_1 & base_2 & acid_2 & base_1 \end{array}$

- water can act as an acid
- $\frac{NH_3(g) + H_2O(I)}{acid_2} = \frac{NH_4^+(aq) + OH^-(aq)}{acid_1} = \frac{DH_2^-(aq)}{base_2}$

< Back

Next >

Preview n

Main 🗖

Next >

< Back

Preview n

Main 🗖

Amphoteric Compounds, *continued* –OH in a Molecule –

- The covalently bonded IOH group in an acid is referred to as a *hydroxyl group*.
- Molecular compounds containing —OH groups can be acidic or amphoteric.
- The behavior of a compound is affected by the number of oxygen atoms bonded to the atom connected to the —OH group.

Section 3 Acid-Base Reactions

Oxyacids of Chlorine

Section 3 Acid-Base Reactions

< Back

Next >

Preview n

Main 🏚

Amphoterism

Click below to watch the Visual Concept.

Neutralization Reactions Strong Acid-Strong Base Neutralization

- In aqueous solutions, neutralization is the reaction of hydronium ions and hydroxide ions to form water molecules.
- A salt is an ionic compound composed of a cation from a base and an anion from an acid.

 $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(I)$

Next >

< Back

Preview n

Main f

Section 3 Acid-Base Reactions

< Back

Next >

Preview n

Main 🏚

Neutralization Reaction

Click below to watch the Visual Concept.

Section 3 Acid-Base Reactions

Next >

< Back

Preview n

Main 🗖

Acid Rain 🖕

Chapter 14

 NO, NO₂, CO₂, SO₂, and SO₃ gases from industrial processes can dissolve in atmospheric water to produce acidic solutions.

• example: $SO_3(g) + H_2O(I) \rightarrow H_2SO_4(aq) \rightarrow H_2SO_4(aq)$

Very acidic rain is known as acid rain.

Acid rain can erode statues and affect ecosystems.

Visual Concepts

Acid Precipitation

< Back

Next >

Preview n

End Of Slide

Main 💼

Section 3 Acid-Base Reactions

< Back

Next >

Preview **n**

Main 🕇

Chemical Weathering

Click below to watch the Visual Concept.

End of Chapter 14 Show

< Back

Next >

Main 🏦

Preview n