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Photoelectric eect 

Under certain conditions,  when light (ultra-violet)  is  shone onto a metal surace 

(such as zinc) ,  electrons are emitted rom the surace.

More detailed experiments (see below)  showed that:

  Below a certain threshold frequency,   f
0
,  no photoelectrons are emitted,  no 

matter how long one waits.

  Above the threshold requency,  the maximum kinetic energy o these  

electrons depends on the requency o the incident light.

  The number o electrons emitted depends on the intensity o the light and does 

not depend on the requency.

  There is  no noticeable delay between the arrival o the light and the emission o 

electrons.

These observations cannot be reconciled with the view that light is  a wave.  A wave o 

any requency should eventually bring enough energy to the metal plate.

StoPPing Potential exPeriment
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In the apparatus above,  photoelectrons 

are emitted by the cathode.  They are 

then accelerated across to the anode by 

the potential dierence.

The potential between cathode and 

anode can also be reversed.  

In this situation,  the electrons are 

decelerated.  At a certain value o 

potential,  the stopping potential,  V
s
,  

no more photocurrent is  observed.  The 

photoelectrons have been brought to rest 

beore arriving at the anode.
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The stopping potential depends on the 

requency o UV light in the linear way 

shown in the graph below.
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The stopping potential is  a measure o 

the maximum kinetic energy o the 

electrons.  

Max KE o electrons =  V
s
e

[since pd =    
energy
 

_
 

charge
  

and e  =  charge on an electron]

    1  _ 
2
   mv2

 =  V
s
e   v =        

2V
s
e
 _ m    

examPle

What is the maximum velocity o electrons  

emitted rom a zinc surace (  =  4.2  eV)  when  

illuminated by EM radiation o wavelength 200 nm?

  =  4.2  eV =  4.2    1 .6    1 0
- 1 9  

J =  6.72    1 0
- 1 9  

J

Energy o photon =  h    
c
 _ 

   =    

6.63    1 0
- 3 4

   3    1 0
8

   
___

  
2   1 0

- 7
  

 =  9.945    1 0
- 1 9  

J

     KE o electron =  (9.945  -  6.72)    1 0
- 1 9  

J

 =  3 .225    1 0
- 1 9  

J

   v =   
_____

   
2  KE
 _ m    

 =   
______________

    
2    3 .225    1 0

- 1 9

  
__

  
9.1    1 0

- 3 1
    

 =  8.4   1 0
5
 m s

- 1

einStein  model

Einstein introduced the idea o 

thinking o light as being made up o 

particles.

His explanation was:

  Electrons at the surace need a 

certain minimum energy in order 

to escape rom the surace.  This 

minimum energy is  called the work 

function  o the metal and given 

the symbol .

  The UV light energy arrives in lots 

o little packets o energy  the 

packets are called photons.

  The energy in each packet is  fxed 

by the requency o UV light that is  

being used,  whereas the number o 

packets arriving per second is fxed 

by the intensity o the source.

  The energy carried by a photon is  

given by

energy in joules

requency o 

light in Hz

Plancks constant  

6.63    1 0
3 4
 J s

E =  hf

  Dierent electrons absorb dierent 

photons.  I the energy o the 

photon is  large enough,  it gives the 

electron enough energy to leave the 

surace o the metal.

  Any extra  energy would be 

retained by the electron as kinetic 

energy.

  I the energy o the photon is too 

small,  the electron will still gain this 

amount o energy but it will soon 

share it with other electrons.

Above the threshold requency,  

incoming energy o photons =  energy 

needed to leave the surace +  kinetic 

energy.

In symbols,

E
max

 =  hf -  

hf =    +  E
max

 or hf =    +  V
s
 e

This means that a graph o requency 

against stopping potential should be a 

straight line o gradient   
e
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WaveParticle duality
The photoelectric eect o light waves clearly demonstrates that 

light can behave like particles,  but its wave nature can also be 

demonstrated  it refects,  reracts,  diracts and intereres just 

like all waves.  So what exactly is  it?  It seems reasonable to ask 

two questions.

1 .  Is light a wave or is it a particle?

The correct answer to this question is yes!  At the most 

undamental and even philosophical level,  light is  just light.  

Physics tries to understand and explain what it is.  We do this by 

imagining models o its behaviour.  Sometimes it helps to think 

o it as a wave and sometimes it helps to think o it as  a particle,  

but neither model is  complete.  Light is  just light.  This dual 

nature o light is  called waveparticle duality.

2 .  If light waves can show particle properties,  can particles such as 

electrons show wave properties?

Again the correct answer is  yes.  Most people imagine moving 

electrons as little particles having a denite size,  shape,  position 

and speed.  This model does not explain why electrons can be 

diracted through small gaps.  In order to diract they must 

have a wave nature.  Once again they have a dual nature.  See 

the experiment below.

de Broglie hyPotheSiS
I matter can have wave properties and waves can have matter 

properties,  there should be a link between the two models.  The 

de Broglie hypothesis is that all moving particles have a matter 

wave associated with them. This matter wave can be thought o 

as a probability unction associated with the moving particle.  The 

(amplitude)
2
 o the wave at any given point is a measure o the 

probability o nding the particle at that point.  The wavelength o 

this matter wave is given by the de Broglie equation:

  =     
hc
 _ pc   =    

hc
 _ 

E
   or photons

  is  the wavelength in m

h  is  Planks constant =  6.63    1 0- 3 4
 J s

c is  the speed o light =  3 .0   1 08  m s- 1

p is  the momentum o the particle

The higher the energy,  the lower the de Broglie wavelength.  This 

equation was introduced on page 69 as the method o calculating 

a photons wavelength rom its energy,  E.  In order or the wave 

nature o particles to be observable in experiments,  the particles 

oten have very high velocities.  In these situations the proper 

calculations are relativistic but simplications are possible.

1 .  At very high energies:  pc =  E

In these situations,  the rest energy o the particles can be 

negligible compared with their energy o motion.  

For example,  the rest energy o an electron (0.51 1  MeV)  is 

negligible i it has been accelerated through an eective potential 

dierence o 420 MV to have kinetic energy o 420 MeV.  In 

these circumstances the total energy o an electron is eectively 

420 MeV.  The de Broglie wavelength o 420 MeV electrons is:

  =   
6.6   10

- 3 4    3.0   108

   
___

   
420   106  

  1 .6   10- 1 9
      = 2.9   10- 1 5  m

2.  At low energies

In these situations the relationship can be restated in terms o 

the momentum p  o the particle measured in kg m s- 1  ( in non-

relativistic mechanics,  P =  mass   velocity) :  

  =    
h
 _ p  

For example,  electrons accelerated through 1  kV would gain a KE 

o 1 .6   10
- 1 6

 J.  Since KE and non-relativistic momentum are 

related by E
K
 =    

p2

 
___
 

2m
   ,  this gives p  =  1 .7    1 0

- 2 3
 kg m s

- 1

 =   
6.6   10

- 3 4

  
__

  
1 .7   10- 2 3

   = 3.9   1 0- 1 1  m

electron diffraction  exPeriment
In order to show diraction,  an electron wave  must travel 

through a gap o the same order as its  wavelength.  The atomic 

spacing in crystal atoms provides such gaps.  I a beam o 

electrons impinges upon powdered carbon then the electrons 

will be diracted according to the wavelength.
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The circles correspond to the angles where constructive 

intererence takes place.  They are circles because the powdered 

carbon provides every possible orientation o gap.  A higher 

accelerating potential or the electrons would result in a higher 

momentum or each electron.  According to the de Broglie 

relationship,  the wavelength o the electrons would thus decrease.  

This would mean that the size o the gaps is now proportionally 

bigger than the wavelength so there would be less diraction.  The 

circles would move in to smaller angles.  The predicted angles o 

constructive intererence are accurately veried experimentally.

daviSSon and germer exPeriment (1927)
The diagram below shows the principle behind the Davisson 

and Germer electron diraction experiment.

A beam o electrons strikes a target nickel crystal.  The electrons 

are scattered rom the surace.  The intensity o these scattered 

electrons depends on the speed o the electrons (as determined 

by their accelerating potential dierence)  and the angle.

A maximum scattered intensity was recorded at an angle 

that quantitatively agrees with the constructive intererence 

condition rom adjacent atoms on the surace.
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introduction
As we have already seen,  atomic spectra (emission and 

absorption)  provide evidence or the quantization o the 

electron energy levels.  See page 69 or the laboratory set-up.  

Dierent atomic models have attempted to explain these energy 

levels.  The frst quantum model o matter was the Bohr model 

or hydrogen:  modern models describe the electrons by using 

waveunctions (see page 1 25) .

hydrogen SPectrum
The emission spectrum o atomic hydrogen consists o particular 

wavelengths.  In 1 885  a Swiss schoolteacher called Johann Jakob 

Balmer ound that the visible wavelengths ftted a mathematical 

ormula.  

These wavelengths,  known as the Balmer series,  were later 

shown to be just one o several similar series o possible 

wavelengths that all had similar ormulae.  These can be 

expressed in one overall ormula called the Rydberg formula.

  
1
 
_
 


   =  R

H
 (   1  _ 
n2

       
1
 
_
 

m2
  )  

   the wavelength

m   a whole number larger than 2  i.e.  3 ,  4,  5  etc

For the Lyman series  o lines ( in the ultra-violet range)  n  =  1 .  

For the Balmer series  n  =  2 .  The other series are the Paschen  

(n  =  3 ) ,  Brackett  (n  =  4) ,  and the Pfund  (n  =  5 )  series.  In 

each case the constant R
H
,  called the Rydberg constant,  has 

the one unique value,  1 .097   1 0
7
 m

1
.  

Pair Production  and Pair annihilation
Matter and radiation interactions are not restricted to the 

absorption or emission o radiation by matter (such as takes 

place in absorption or emission spectra,  above) .  As introduced on 

page 73,  or every normal  matter particle that exists,  there will 

be a corresponding antimatter particle which has the same mass 

but every other property is opposite.  For example:

  The antiparticle o an electron,  e
-
 (or -

)  is  a positron,   

e
+
 (or +

)

  The antiparticle or a proton,  p
+
 is  the antiproton,  p

-

  The antiparticle or a neutrino,    is  an antineutrino,   
_
  

When a particle and its corresponding antiparticle meet 

they annihilate  one another and the mass is  converted into 

radiation.  As seen on page 78,  these annihilations must obey 

certain conservations and in particular the conservation o 

energy,  momentum and charge.

When an electron e
-
 and a positron e

+
 annihilate typically 

they create two photons.  Each photon has a momentum and 

i combined momentum o the electronpositron pair was 

initially zero,  then the two photons will be travelling in opposite 

directions.  The reverse process is  also possible  photons o 

sufcient energy can convert into a pair o particles (one matter 

and one antimatter) .  Much o the energy goes into the rest 

masses o the particles with any excess going into the kinetic 

energy o the particles that have been created.  Typically or pair 

production to take place,  the photon needs to interact with a 

nucleus.  The nucleus is  not changed in the interaction but is  

involved in the overall conservation o momentum and energy 

that must take place.  Without its  ability to absorb  some o the 

momentum,  the interaction could not occur.  

examPle
The diagram below represents some o the electron energy levels in the hydrogen atom.  Calculate the wavelength o the photon 

emitted when an electron alls rom n  =  3  to n  =  2 .

0

-0.9

-1.5

-3.4

-13.6

energy  level  / eV

n  =  3

n  =  2

a l lowed energy

levels

ground  state:  n  =  1

Energy dierence in levels =  3 .4   1 .5  =  1 .9  eV =  1 .9    1 .6    1 0
- 1 9

 J =  3 .04   1 0
- 1 9

 J

Frequency o photon f =    
E
 _ 

h
   =    

3 .04   1 0
- 1 9

  
__

  
6.63    1 0

- 3 4
   =  4.59   1 0

1 4  
Hz

Wavelength o photon   =    c _ 
f
    =    

3 .00   1 0
8

 
__

  
4.59   1 0

1 4
   =  6.54   1 0

- 7
 m =  654 nm

This is  in the visible part o the electromagnetic spectrum and one wavelength in the Balmer series.
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Bohr model

Niels Bohr took the standard planetary  model o the hydrogen 

atom and flled in the mathematical details.  Unlike planetary 

orbits,  there are only a limited number o allowed  orbits 

or the electron.  Bohr suggested that these orbits had fxed 

multiples o angular momentum.  The orbits were quantized 

in terms o angular momentum.  The energy levels predicted 

by this quantization were in exact agreement with the 

discrete wavelengths o the hydrogen spectrum.  Although this 

agreement with experiment is impressive,  the model has some 

problems associated with it.

Bohr postulated that:

  An electron does not radiate energy when in a stable orbit.  

The only stable orbits possible or the electron are ones 

where the angular momentum  o the orbit is  an integral 

multiple o   h __ 
2
   where h  is  a fxed number (6.6    1 03 4  J s)  

called Plancks constant.  Mathematically

m
e
vr =    

nh
 _ 

2
  

[angular momentum is equal to m
e
vr]

  When electrons move between stable orbits they radiate (or 

absorb)  energy.

F
e le ctro s ta tic

 =  centripetal orce

     
e2
 _ 

4
0
r2
   =    

m
e
v2

 _ r  

but v =    
nh
 _ 

2m
e
r
   [rom 1 st postulate]

   r =    

0
n2h2

 _ 
m

e
e2
   (by substitution)

Total energy o electron =  KE +  PE

where KE =    
1
 _ 

2
  m

e
v2  =    

1
 _ 

2
     

e2
 _ 

(4
0
r)
  

and PE =  -   
e2
 _ 

4
0
r
   [electrostatic PE]

so total energy E
n
 =  -    

1
 _ 

2
     

e2
 _ 

4
0
r
   =  -   

m
e
e4

 _ 
8   

0
  2  n2h2

  

This fnal equation shows that:

  the electron is bound to (=  trapped by)  the proton because 

overall it has negative energy.  

  the energy o an orbit is  proportional to    1  __ 
n2
  .  In electronvolts

E
n
 =     

13.6
 _ 

n2
  

The second postulate can be used (with the ull equation)  to 

predict the wavelength o radiation emitted when an electron 

makes a transition between stable orbits.

    hf =  E
2
 -  E

1

    =    
m

e
e4

 _ 
8

0

2h2
    (   1  _ n

1

2
   -    

1
 _ 

n
2

2
  )  

but f =    
c
 _ 


  

    
1
 _ 


   =    

m
e
e4

 _ 
8

0

2ch3
    (   1  _ n

1

2
   -    

1
 _ 

n
2

2
  )  

It should be noted that:

  this equation is o the same orm as the Rydberg ormula.

  the values predicted by this equation are in very good 

agreement with experimental measurement.

  the Rydberg constant can be calculated rom other (known)  

constants.  Again the agreement with experimental data is good.

The limitations to this model are:

  i the same approach is used to predict the emission spectra 

o other elements,  it ails  to predict the correct values or 

atoms or ions with more than one electron.

  the frst postulate (about angular momentum)  has no 

theoretical justifcation.

  theory predicts that electrons should,  in act,  not be stable 

in circular orbits around a nucleus.  Any accelerated electron 

should radiate energy.  An electron in a circular orbit is  

accelerating so it should radiate energy and thus spiral in to 

the nucleus.

  it is unable to account or relative intensity o the dierent lines.

  it is unable to account or the fne structure o the spectral lines.

nuclear radii  and nuclear denSitieS

Not surprisingly,  more  massive  nuclei have  larger radii.  

Detailed analysis  o the  data implies  that the  nuclei have  a 

spherical distribution o positive  charge  with an essentially 

constant density.  The  results  are  consistent with a  model 

in which the  protons  and neutrons  can be  imagined to  be 

hard spheres  that are  bonded tightly together in a  sphere 

o constant density.  A nucleus  that is  twice  the  size  o a 

smaller nucleus  will  have  roughly 8  (=2 3 )  times  the  mass.

The nuclear radius R  o element with atomic mass number A  

can be modelled by the relationship:

R =  R
0
  A  

  
1
 _ 

3
  
 

Where R
0
 is  a constant roughly equal to 1 0- 1 5  m (or 1  m) .   

R
0
 =  1 .2    1 0- 1 5  m =  1 .2  m.

e.g.  The radius o a uranium-238 nucleus is  predicted to be

R  =  1 .2    10- 1 5     (238)  
  
1
 _ 

3
  
  m = 7.4 m 

The volume o a nucleus,  V,  o radius,  R  is  given by:

V =   
4
 _ 

3
   R3  

=   
4
 _ 

3
   AR

0

3  

Where the mass number A  is  equal to the number o nucleons

The number o nucleons per unit volume =   
A
 _ 

V
   =   

3A
 _ 

4AR
0

3
    

 =   
3
 _ 

4R
0

3
  

The mass o a nucleon is m  ( 1 .7    10- 2 7  kg) ,  so the nuclear 

density   is:

  =    3m _ 
4R

0

3
   =  

3    1 .7    10- 2 7

  __  
4(1 .2    10- 1 5 ) 3

      = 2    1 01 7  kg m- 3

This is  a vast density (a teaspoon o matter o this density has 

a mass  101 2  kg) .  The only macroscopic objects with the same 

density as nuclei are neutron stars (see page 200) .
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Schrdinger model
Erwin Schrdinger (18871961 )  built on the concept o matter 

waves and proposed an alternative model o the hydrogen atom 

using wave mechanics.  The Copenhagen interpretation  is a way 

to give a physical meaning to the mathematics o wave mechanics.

  The description o particles (matter and/or radiation)  in 

quantum mechanics is  in terms o a wavefunction  .  This 

waveunction has no physical meaning but the square o the 

waveunction does.

    is  a complex number.

  At any instant o time,  the waveunction has dierent values 

at dierent points in space.

  The mathematics o how this waveunction develops with 

time and interacts with other waveunctions is  like the 

mathematics o a travelling wave.

  The probability o fnding the particle (electron or photon,  

etc.)  at any point in space within the atom is given by the 

square o the amplitude o the waveunction at that point.

  The square o the absolute value o , | | 2 ,  is  a real number 

corresponding to the probability density o fnding the 

particle in a given place.  

  When an observation is  made the waveunction is said to 

collapse,  and the complete physical particle (electron or 

photon,  etc. )  will be observed to be at one location.

The standing waves on a string have a fxed wavelength 

but or energy reasons the same is  not true or the electron 

waveunctions.  As an electron moves away rom the nucleus it 

must lose kinetic energy because they have opposite charges.  

Lower kinetic energy means that it would be travelling with 

a lower momentum and the de Broglie relationship predicts a 

longer wavelength.  This means that the possible waveunctions 

that ft the boundary conditions have particular shapes.

The waveunction provides a way o working out the probability 

o fnding an electron at that particular radius.  || 2  at any given 

point is a measure o the probability o fnding the electron at 

that distance away rom the nucleus  in any direction.

p(r)  =  |    | 2V

The waveunction exists in all three dimensions,  which makes 

it hard to visualize.  Oten the electron orbital is  pictured as a 

cloud.  The exact position o the electron is not known but we 

know where it is  more likely to be.

In Schrdingers model there are dierent waveunctions depending 

on the total energy o the electron. Only a ew particular energies 

result in waveunctions that ft the boundary conditions  electrons 

can only have these particular energies within an atom. An electron 

in the ground state has a total energy o 13.6 eV,  but its position 

at any given time is undefned in this model.  The waveunction or 

an electron o this energy can be used to calculate the probability o 

fnding it at a given distance away rom the nucleus.  

   The resulting orbital  or the electron can be described in 

terms o the probability o fnding the electron at a certain 

distance away.  The probability o fnding the electron at a 

given distance away is shown in the graph below.
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   The electron in this orbital can be visualized as a cloud o 

varying electron density.  It is more likely to be in some places 

than other places,  but its actual position in space is undefned.

1s

Electron cloud or the 1 s orbital in hydrogen

There are other fxed total energies or the electron that result 

in dierent possible orbitals.  In general as the energy o the 

electron is  increased it is  more likely to be ound at a urther 

distance away rom the nucleus.
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Probability density unctions or some orbitals in the hydrogen 

atom. The scale on the vertical axis is dierent rom graph to graph.

The waveunction is central to quantum mechanics and,  in 

principle,  should be applied to all particles.

Example:

A particle is  described as the ollowing waveunction:
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mid-point
probabil ity  of

detection  outside
L is  zero

A

L

L

B

x

 2

A
B

The particle will not be detected at the mid point and the 

probability o detection at A =  probability o detection at B.

probability o detecting the electrons in a small volume o 

space,  V
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heiSenBerg uncertainty PrinciPle
The Heisenberg uncertainty principle  identifes a 

undamental limit to the possible accuracy o any physical 

measurement.  This limit arises because o the nature o 

quantum mechanics and not as a result o the ability (or 

otherwise)  o any given experimenter.  He showed that it was 

impossible to measure exactly the position and  the momentum 

o a particle simultaneously.  The more precisely the position is 

determined,  the less precisely the momentum is known in this 

instant,  and vice versa.  They are linked variables and are called 

conjugate quantities.

There is a mathematical relationship linking these uncertainties.

xp      
h
 _ 

4
  

x The uncertainty in the measurement o position

p The uncertainty in the measurement o momentum

Measurements o energy and time are also linked variables.

Et     
h
 _ 

4
  

E The uncertainty in the measurement o energy

t The uncertainty in the measurement o time

The implications o this lack o precision are proound.  Beore 

quantum theory was introduced,  the physical world was best 

described by deterministic theories  e.g.  Newtons laws.  A 

deterministic theory allows us ( in principle)  to make absolute 

predictions about the uture.

Quantum mechanics is  not deterministic.  It cannot ever predict 

exactly the results o a single experiment.  It only gives us the 

probabilities o the various possible outcomes.  The uncertainty 

principle takes this even urther.  Since we cannot know the 

precise position and momentum o a particle at any given time,  

its uture can never be determined precisely.  The best we can do 

is to work out a range o possibilities or its uture.  

It has been suggested that science would allow us to 

calculate the uture so long as we know the present exactly.  

As Heisenberg himsel said,  it is  not the conclusion o this 

suggestion that is  wrong but the premise.

eStimateS from the uncertainty PrinciPle
Example calculation:  The position o a proton is measured 

with an accuracy o   1 .0    1 0- 1 1
 m.  What is  the minimum 

uncertainty in the protons position 1 .0 s  later?   

xp    
h
 _ 

4
       x   mv    

h
 _ 

4
    

v    
h
 _ 

4mx
    =   

6.63  1 0- 3 4

  
___

   
4 1 .67 10- 2 7 1 .0 10- 1 1

     

 =  3200 m s
- 1

Thus uncertainty in position ater 1 .0 s  =  3200 m =  3 .2  km

The uncertainty principle can also be applied to illuminate some 

general principles but,  to quote Richard Feynman (Feynman 

lectures on Physics,  volume III,  1 963) ,  [the application]  must 

not be taken too seriously; the idea is right but the analysis is not very 

accurate.

1 .  Estimate o the energy o an electron in an atom.

When an electron is known to be confned within an atom,  

then the uncertainty in its position x must be less than 

the size o the atom,  a.  I we equate the two,  this means the 

uncertainty or its momentum can be estimated as:  

p    
h
 _ 

4x
       

h
 _ 

4a
  

I we take this uncertainty in the momentum as a value or the 

momentum o the electron (pp) ,  the equations o classical 

mechanics can estimate the kinetic energy o the electron:

E
K
 =   

p2

 
_
 

2m
        

h2

 
_
 

322ma2
  

The diameter o a hydrogen atom is approximately 10
- 1 0

 m,  

so the estimation o the kinetic energy is:

E
K
    

(6.6    10- 3 4
)
2

  
___

   
322    9.3 10- 3 1    (10- 1 0

)
2
    = 1 .5    10- 1 9

 J 

  1  eV 

This calculation is a very rough estimate but correctly predicts 

the right order o magnitude or the electrons kinetic energy 

(ground state o electron in H atom is -13.6 eV) .  

2 .  Impossibility o an electron existing within a nucleus o 

an atom.

The above calculation can be repeated imagining an electron 

being trapped inside the nucleus o size 10
- 1 4

 m.  I confned 

to a space this small,  the electrons kinetic energy would be 

estimated to be a actor o 10
8
 times bigger.  An electron with 

an energy o the order o 100 MeV cannot be bound to a 

nucleus and thus it would have enough energy to escape.

3.  Estimate o lietime o an electron in an excited energy state.

The spectral linewidth  associated with an atoms emission 

spectrum is usually taken to be very small  only discrete 

wavelengths are observed.  As a result o the uncertainty 

principle,  the linewidth is,  however,  not zero.  Practically,  

there will be a very limited range o wavelengths associated 

with any given transition and thus the uncertainty associated 

with the energy dierence between the two levels involved 

is very small.  An estimate o the lietime o an electron in 

the excited state can be made using the uncertainty principle 

as the uncertainty in energy,  E,  o a transition is inversely 

proportional to the average lietime,  t,  in the excited state:

Et    
h
 _ 

4
  

I E = 5    1 0- 7
 eV 

 t    
6.6   10- 3 4

  
___

   
4   5    10- 7

   1 .6   10- 1 9
  

  =  6.6   10- 1 0
  1  ns 
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Heisenbergs uncertainty relationship can be used to explain 

the quantum phenomenon o tunnelling.  The situation being 

considered is  a particle that is  trapped because its energy E 

is  less than the energy it needs to escape (U
0
) .  In classical 

physics,  i a particle does not have enough energy to escape 

rom the potential barrier  then it will always remain trapped 

inside the system.  An example would be a 500 g tennis ball 

with a total energy o 4 J bouncing up and down between 

two walls that are 1 .2  m high.  In order to get over one o 

the walls,  the tennis ball needs to have a potential energy o 

mgh  =  0.5    1 0   1 .2  =  6  J.  Since it only has 4 J it must remain 

trapped by the walls.

In an equivalent microscopic situation (e.g.  an electron trapped 

inside an atom with energy E which is less than the energy 

U
0
 needed to escape) ,  the rules o quantum physics mean 

that it is now possible or the particle to escape!  The particles 

waveunction is continuous and does not drop immediately 

to zero when it meets the sides o the potential well but the 

amplitude decreases exponentially.  This means that i the barrier 

has a nite width then the waveunction does continue on the 

other side o the barrier (with reduced amplitude) .  Thereore 

there is a probability that particle will be able to escape despite 

not having enough energy to do so.  Escaping the potential well 

does not use up any o the particles total energy.

classical ly  forbidden  region

U0

exit

Reduced  probabil ity,  but  not 

reduced  energy!

incident

E

particle  energy

incoming particle
wavefunction

particle  wavefunction
past  the barrier

An explanation can be oered in terms o the uncertainty 

principle.  In order or the particle to escape it would need a 

greater total energy (E +  E =  U
0
) .  The particle can disobey  

the law o conservation o energy by borrowing  an amount o 

energy E provided it pays it back  in a time t such that the 

uncertainty principle applies:  

Et    h _ 
4
  

The longer the barrier,  the more time it takes the particle to 

tunnel.  Increased tunnelling time will reduce the maximum 

possible uncertainty in the energy.

Example 1   alpha  decay
The protons and neutrons that orm alpha particles already exist 

within nuclei and when emitted overall there is  a release o 

energy.  For example uranium-238 has a hal-lie o about  

4.5  billion years.  It decays by emitting an alpha particle:

     
 9 2

  
2 3 8

 U     
 9 0

  
2 3 4

 Th +     
2
  

4

 

The energy o the emitted alpha particle is  4.25  MeV which 

is less than the total potential energy needed to escape the 

strong orce within the nucleus.  I we imagine an alpha particle 

being ormed inside the uranium nucleus,  it can only escape 

by tunnelling through the potential barrier.  In this example,  

the very long hal-lie must mean that the probability o the 

tunnelling process taking place (given by  |   |  2 )  must be very low.

nuclear
surface

attractive
nuclear
potentia l

repulsive Coulomb
potentia l   1/r

wavefunction  of
alpha  particle

en
er
gy

 V
(r
)

U



r

X

Example 2   tunnel l ing electron  microscope
In a scanning tunnelling microscope,  a very ne metal tip 

is  scanned close to,  but not touching (separated by a ew nm) ,  

a sample metal surace.  There is a potential dierence between 

the probe and the surace but the electrons in the surace do not 

have enough energy to escape the potential energy barrier as 

represented by the work unction .  Quantum tunnelling can,  

however,  take place and a tunnelling current will fow as the 

waveunction o an electron at the surace will extend beyond 

the metal surace.  Some electrons will tunnel the gap and 

electrical current will be measurable.  The value o the current 

depends on the separation o the tip and the surace and can be 

used to visualize atomic structure.

sample

path  of

the probe

surface
of sample

tunnel l ing

current

scanning tunnelling
microscope (STM)

tip

tunneing,  poenia  barrier and  acors afecing  
unneing probabiiy

hl
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t shl

the nucleuS  Size

In the example below,  alpha particles are allowed to bombard 

gold atoms.  

As they approach the 

gold nucleus,  they eel a 

orce o repulsion.  I an 

alpha particle is heading 

directly or the nucleus,  it 

will be refected straight 

back along the same 

path.  It will have got as 

close as it can.  Note that none o the alpha particles actually 

collides with the nucleus  they do not have enough energy.

Alpha particles are emitted rom their source with a known 

energy.  As they come in they gain electrostatic potential 

energy and lose kinetic energy ( they slow down) .  At the 

closest approach,  the alpha particle is  temporarily stationary 

and all its energy is potential.

Since electrostatic energy =    
q

1
q

2

 
____
 

4
0
r
  ,  and we know q

1
,  the charge 

on an alpha particle and q
2
,  the charge on the gold nucleus we 

can calculate r.  

closest  approach,  r

alpha  particles

nucleus

deviationS from rutherford Scattering in  

high  energy exPerimentS

Rutherord scattering is modelled in terms o the coulomb 

repulsion between the alpha particle and the target nucleus.  

At relatively low energies,  detailed analysis o this model 

accurately predicts the relative intensity o scattered alpha 

particles at given angles o scattering.  At high energies,  

however,  the scattered intensity departs rom predictions.

+



xed
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scattering

angle

Fixed scattering angle,

range of alpha

particle energies.
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re
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alpha

energy

in  MeV

The scattered  intensity

departs from the Rutherford

scattering formula  at  about

27.5  MeV
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At these high energies the alpha particles are beginning to get 

close enough to the target nucleus or the strong nuclear force to  

begin to have an eect.  In order to investigate the size o the 

nucleus in more detail,  high energy electrons can be used (see 

box on the right) .

examPle

I the   particles have an energy o 4.2  MeV,  the closest 

approach to the gold nucleus (Z =  79)  is  given by

  
(2    1 .6    1 0

- 1 9
)  (79   1 .6    1 0

- 1 9
)
    

____
   

4       8.85    1 0
- 1 2

   r
    

=  4.2    1 0
6
   1 .6    1 0

- 1 9

  r =    
2    1 .6    1 0

- 1 9
   79
   

___
   

4       8.85    1 0
- 1 2

   4.2    1 0
6
  

 =  5 .4   1 0
- 1 4

 m

nuclear Scattering exPeriment involving 

electronS 

Electrons,  as leptons,  do not eel the strong orce.  High-energy 

electrons have a very small de Broglie wavelength which can be 

o the right order to diract around small objects such as nuclei.  

The diraction pattern around a circular object o diameter D  

has its rst minimum at an angle   given by:

sin      

 _ 

D
  

[Note that this small angle approximation is usually not 

appropriate to use to determine the location o the minimum 

intensity but this is being used to give an approximate answer 

around a spherical object.  A more exact expression that is  

sometimes used or circular objects is sin    =  1 .22    

 

__
 

D
  ]

High energy (400 MeV)  electrons are directed at a target 

containing carbon-12  nuclei:

electron  beam

thin  sample detector 



The results are shown below:

diraction  angle  ()

( logarithmic
scale)

intensity  of
diracted
electrons

35

The rst minimum is   =  35

The de Broglie wavelength or the electrons is eectively:  

 =   
hc
 _ 

E
    =   

6.6   10
- 3 4

   3.0   10
8

   
___

   
400   10

6  
  1 .6    1 0

- 1 9
   =  3 .1    10

- 1 5
 m 

D      

 _ 

sin  
   =    

3.1    1 0
- 1 5

 
__
 

sin  35
    = 5.4   10

- 1 5
 m 

So radius o nucleus   2 .7    1 0
- 1 5

 m
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energy levelS
The energy levels in a nucleus are higher than the energy levels o 

the electrons but the principle is the same.  When an alpha particle or 

a gamma photon is emitted rom the nucleus only discrete energies 

are observed.  These energies correspond to the dierence between 

two nuclear energy levels  in the same way that the photon energies 

correspond to the dierence between two atomic energy levels.

Beta particles are observed to have a continuous spectrum o 

energies.  In this case there is another particle (the antineutrino in 

the case o beta minus decay)  that shares the energy.  Once again the 

amount o energy released in the decay is fxed by the dierence 

between the nuclear energy levels involved.  The beta particle and the 

antineutrino can take varying proportions o the energy available.  The 

antineutrino,  however,  is very difcult to observe (see box below) .

226
88

Ra

222
Rn*

86



(4.59  MeV)


(4.78  MeV)

excited  state
ground  

state

 photon

(0.19  MeV)  222
Rn

86

n  s   HL

neutrinoS and antineutrinoS
Understanding beta decay properly requires 

accepting the existence o a virtually 

undetectable particle,  the neutrino.  It is  

needed to account or the missing energy 

and (angular)  momentum when analysing 

the decay mathematically.  Calculations 

involving mass dierence mean that we 

know how much energy is available in 

beta decay.  For example,  an isotope o 

hydrogen,  tritium,  decays as ollows:
3

    
1
  3  H       

2
  3  He +      

- 1
     0  

The mass dierence or the decay is  

1 9.5  keV c2 .  This means that the beta 

particles should have 19.5  keV o kinetic 

energy.  In act,  a ew beta particles are 

emitted with this energy,  but all the others 

have less than this.  The average energy 

is about hal this value and there is no 

accompanying gamma photon.  All beta 

decays seem to ollow a similar pattern.

n
u
m
b
e
r 
o
f 
e
le
ct
ro
n
s

0 .5 1

energy  / MeV

0

The energy distribution o the electrons 

emitted in the beta decay o bismuth-210.  

The kinetic energy o these electrons is 

between zero and 1 .1 7 MeV.

The neutrino (and antineutrino)  must be 

electrically neutral.  Its mass would have 

to be very small,  or even zero.  It carries 

away the excess energy but it is  very hard 

to detect.  One o the triumphs o the 

particle physics o the last century was  

to be able to design experiments that 

confrmed its existence.  The ull equation 

or the decay o tritium is:

    1   
3  H      

2
  3  He +    

- 1
     0    +   

_
  

where  
_
   is  an antineutrino

As has been mentioned beore,  another 

orm o radioactive decay can also take 

place,  namely positron decay.  In this 

decay,  a proton within the nucleus 

decays into a neutron and the antimatter 

version o an electron,  a positron,  which 

is emitted.

    
1
  1  p      

0
  1  n +    

+ 1
     0  +  +  

In this case,  the positron,  + ,  is  

accompanied by a neutrino.  

The antineutrino is  the antimatter orm 

o the neutrino.

e.g.      
1 0
  1 9  Ne      

 9
  1 9  F +     

+ 1
    0  +  +  

    
 6
  1 4  C      

 7
  1 4  N +     

- 1
    0    +   

_
  

mathematicS of exPonential decay
The basic relationship that defnes 

exponential decay as a random process is  

expressed as ollows:

  
dN
 _ 

dt
        N

The constant o proportionality between 

the rate o decay and the number o nuclei 

available to decay is called the decay 

constant and given the symbol .  Its units 

are time- 1  i.e.  s- 1  or yr- 1  etc.

  
dN
 _ 

dt
   =  -N

The solution o this equation is:

N =  N
0
e-  t

The activity o a source,  A,  A  =  -   
dN
 _ 

dt
  

A  =  A
0
e-  t =  N

0
e-  t

It is  useul to take natural logarithms:

 ln (N)  =  ln (N
0
e-  t)

  =  ln (N
0
)  +  ln (e-  t)

  =  ln (N
0
)  -  t ln (e)

   ln (N)  =  ln (N
0
)  -  t ( since ln (e)  =  1 )

This is  o the orm y  =  c +  mx so a graph 

o ln N vs t will give a straight-line graph.

 N =  N
0
e-  t

 I  t =   T  
  
1
 _ 

2
  
 

 N =    
N

0
 _ 

2
  

 So    
N

0
 _ 

2
   =  N

0
 e   
-   T  

  
1
 
_

 
2
  
 

 

     
1
 _ 

2
   =   e   

-   T  
  
1
 
_

 
2
  
 

 

   In   =  - T  
  
1
 _ 

2
  
 

  - T  
  
1
 _ 

2
  
  =  -  In 

  =  ln 2

    T  
  
1
 _ 

2
  
  =    

ln 2
 _ 


  

intercept  =

ln (N0) gradient =  -

t

In  (N) examPle
The hal-lie o a radioactive isotope 

is 1 0 days.  Calculate the raction o a 

sample that remains ater 25  days.

 T  
  
1
 

__ 
2
   
 =  1 0 days

  =    
ln 2
 _ 

 T  
  
1
 

__ 
2
   
 
  

 =  6.93    1 0- 2  day- 1

N =  N
0
e-  t

Fraction remaining =   
N
 _ 

N
0

  

 =   e  - ( 6 . 9 3    1 0 - 2    2 5 )  

 =  0.1 87

 =  1 8.7%

The decay o 2 2 6Ra into 2 2 2Rn
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1 .  The diagrams show the variation with distance x o the 

waveunction   o our dierent electrons.  The scale on the 

horizontal axis in all our diagrams is  the same.  For which 

electron is the uncertainty in the momentum the largest?

a)  


0 x

 c)  


0 x

b)  

0 x

 d)  

0 x

2.   The diagram represents the available energy levels o an 

atom.  How many emission lines could result rom electron 

transitions between these energy levels?

energy

ground

state

A.  3   B .  6   C .  8   D.  1 2

3.  A medical physicist wishes to investigate the decay o a 

radioactive isotope and determine its  decay constant and hal-

lie.  A GeigerMller counter is  used to detect radiation rom 

a sample o the isotope,  as shown.

radioactive
source

GeigerMl ler
tube

voltage supply
and  counter

a)  Dene the activity o a radioactive sample.  [1 ]

Theory predicts that the activity A  o the isotope in the 

sample should decrease exponentially with time t according 

to the equation A  =  A
0
e
-  t
,  where A

0
 is  the activity at t =  0  

and   is  the decay constant or the isotope.

b)  Manipulate this equation into a orm which will give a 

straight line i a semi-log graph is plotted with appropriate 

variables on the axes.  State what variables should be 

plotted.  [2]

The Geiger counter detects a proportion o the particles 

emitted by the source.  The physicist records the count-rate R  

o particles detected as a unction o time t and plots the data 

as a graph o ln R  versus t,  as  shown below.

c)  Does the plot show that the experimental data are 

consistent with an  exponential law? Explain.  [1 ]

 

0 1 2 3 4 5
t  / hr

2

1I
n
 (
R
 /
 s
-

1
)

d)  The Geiger counter does not measure the total  

activity A  o the sample,  but rather the count-rate  

R  o those particles that enter the Geiger tube.  Explain 

why this will not matter in determining the decay  

constant o the sample.  [1 ]

e)  From the graph,  determine a value or the decay  

constant .  [2]

 The physicist now wishes to calculate the hal-lie.

)  Dene the hal-lie o a radioactive substance.  [1 ]

g)  Derive a relationship between the decay constant   

and the hal-lie  .  [2]

h)  Hence calculate the hal-lie o this radioactive  

isotope.  [1 ]

4.   This question is about the quantum concept.

A biography o Schrdinger contains the ollowing sentence:  

Shortly ater de Broglie introduced the concept o matter waves  

in 1 924,  Schrdinger began to develop a new atomic theory.

a)  Explain the term matter waves .  State what quantity 

determines the wavelength o such waves.  [2]

b)  Electron diraction provides evidence to support  

the existence o matter waves.  What is  electron 

diraction? [2]

5 .  Light is  incident on a clean metal surace in a vacuum.  The 

maximum kinetic energy KE
max

 o the electrons ejected rom 

the surace is  measured or dierent values o the requency f 

o the incident light.

The measurements are shown plotted below.
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a)  Draw a line o best t or the plotted data points.  [1 ]

b)  Use the graph to determine 

  ( i)  the Planck constant [2]

 ( ii)   the minimum energy required to eject an  

electron rom the surace o the metal ( the work 

function) .  [3]

c)  Explain briefy how Einsteins photoelectric theory 

accounts or the act that no electrons are emitted  

rom the surace o this metal i the requency o  

the incident light is  less than a certain value.  [3]

6.  Thorium-227 (Th-227)  undergoes a-decay with a hal-lie o 

1 8 days to orm radium-223  (Ra-223) .  A sample o Th-227 

has an initial activity o 3.2    1 0
5
 Bq.

Determine the activity o the remaining thorium-227 ater  

50 days.   [4]

7.  Explain:

a)  The role o angular momentum in the Bohr model or 

hydrogen [3]

b)  Pair production and ahnihilation [3]

c)  Quantum tunnelling [3]  

iB Questons  quantum and nucear pyscs

i B  Q u e s t i o n s    Q u an tu m  a n d  n u c le ar  p h ys i c s
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