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Rr r

ObseRveRs and fRames Of RefeRence

The proper treatment o large velocities  involves an 

understanding o Einsteins  theory o relativity and this  means 

thinking about space and time in a completely dierent way.  

The reasons or this  change are developed in the ollowing 

pages,  but they are surprisingly simple.  They logically ollow 

rom two straightorward assumptions.  In order to  see why 

this  is  the case we need to consider what we mean by an 

object in motion in the frst place.

A person sitting in a chair will probably think that they are at 

rest.  Indeed rom their point o view this must be true,  but this 

is not the only way o viewing the situation.  The Earth is in orbit 

around the Sun,  so rom the Suns point o view the person 

sitting in the chair must be in motion.  This example shows that 

an objects motion (or lack o it)  depends on the observer.  

The calculation o relative velocity was considered on page 9.  

This treatment,  like all the mechanics in this book so ar,  

assumes that the velocities are small enough to be able to  

apply Newtons laws to dierent rames o reerence.

Galilean TRansfORmaTiOns

It is  possible to ormalize the relationship between two dierent 

rames o reerence.  The idea is to use the measurement in one 

rame o reerence to work out the measurements that would 

be recorded in another rame o reerence.  The equations that 

do this without taking the theory o relativity into consideration 

are called Galilean transformations.  

The simplest situation to consider is  two rames o reerence  

(S and S')  with one rame (S')  moving past the other one (S)   

as shown below.

y
y

frame S  ( stationary)

velocity  v

x
x

y
frame S  

x

y

frame S

velocity  v

x

t  =  later

t  =  zero ( two frames on  top of one another)

frame S

Each rame o reerence can record the position and time o 

an event.  Since the relative motion is  along the x-axis,  most 

measurements will be the same:

y'  =  y;  z'  =  z;  t'  =  t

I an event is  stationary according to one rame,  it will be 

moving according to the other rame  the rames will record 

dierent values or the x measurement.  The transormation 

between the two is given by

x'  =  x -  vt

We can use these equations to ormalize the calculation o 

velocities.  The rames will agree on any velocity measured in 

the y  or z direction,  but they will disagree on a velocity in the 

x-direction.  Mathematically,

u'  =  u  -  v

For example,  i the moving rame is going at 4 m s- 1 ,  then  

an object moving in the same direction at a velocity o  

1 5  m s- 1  as recorded in the stationary rame will be measured as 

travelling at 1 1  m s- 1  in the moving rame.

Newtons 3  laws o motion describe how an objects  motion is 

eected.  An assumption (Newton's Postulates)  underlying these 

laws is that the time interval between two events is  the same or 

all observers.  Time is  the same or all rames and the separation 

between events will also be the same in all rames.  As a result,  

the same physical laws will apply in all rames.

O p T i O n  a    R e l aT i v i T y

failuRe Of Galilean TRansfORmaTiOn  equaTiOns

I the speed o light has the same value or all observers (see box on let)  then 

the Galilean transormation equations cannot work or light.  

velocity  of bicycle,  v 

Light  leaves the  torch  
at  velocity  c with  respect  
to  the  person  on  the  bicycle.

Light  arrives at  the observer 
at velocity c (not  v +  c) .

The theory o relativity attempts to work out what has gone wrong.

piOn  decay eXpeRimenTs

In 1 964 an experiment at the European 

Centre or Nuclear Reseach (CERN)  measured 

the speed o gamma-ray photons that had 

been produced by particles moving close to 

the speed o light and ound these photons 

also to be moving at the speed o light.  This 

is  consistent with the speed o light being 

independent o the speed o its source,  to a 

high degree o accuracy.

The experiment analysed the decay o a 

particle called the neutral pion into two 

gamma-ray photons.  Energy considerations 

meant that the pions were known to be 

moving aster than 99.9%  o the speed o light 

and the speed o the photons was measured to 

be 2.9977   0.0040   1 08  m s- 1 .

I s  this  person  at  rest or moving at  great  velocity?

Sun
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mx  quto

maXwell and The cOnsTancy Of The speed Of liGhT

In 1 864 James Clerk Maxwell presented a new theory at the 

Royal Society in London.  His ideas were encapsulated in a 

mathematical orm that elegantly expressed not only what 

was known at the time about the magnetic eld B  and the 

electric eld E,  but it also proposed a uniying link between 

the two  electromagnetism.  The rules  o electromagnetic 

interactions are summarized in our equations known as 

Maxwells equations.  These equations predict the nature o 

electromagnetic waves.

Most people know that light is  an electromagnetic wave,  but 

it is  quite hard to understand what this actually means.  A 

physical wave involves the oscillation o matter,  whereas an 

electromagnetic wave involves the oscillation o electric and 

magnetic elds.  The diagram below attempts to show this.

oscil lating electric eld

oscil lating magnetic eld

z

y

The changing electric and magnetic elds move through space 

 the technical way o saying this  is  that the elds propagate  

through space.  The physics  o how these  elds propagate 

allows the speed o all electromagnetic waves ( including light)  

to be predicted.  It turns out that this  can be  done in terms o 

the electric and magnetic constants o the medium through 

which they travel.  

c =  
____

    
1
 
_
 


0  


0

    

This equation does not need to be understood in detail.  The 

only important idea is that the speed o light is  independent  

o the velocity o the source o the light.  In other words,  a 

prediction rom Maxwells equations is  that the speed o light in 

a vacuum has the same value or all observers.  

This prediction o the constancy o the speed o light highlights 

an inconsistency that cannot be reconciled with Newtonian 

mechanics (where the resultant speed o light would be equal to 

the addition o the relative speed o the source and the relative 

speed o light as measured by the source) .  Einsteins analysis 

orced long-held assumptions about the independence o space 

and time to be rejected.

cOmpaRinG elecTRic and maGneTic fields

Electrostatic orces and magnetic orces appear very dierent to 

one another.  Fundamentally,  however,  they are just dierent 

aspects o one orce  the electromagnetic interaction.  The 

nature o which eld is observed depends on the observer.  For 

example:

a)  A charge moving at right angles to a magnetic eld.

An observer in a rame o reerence that is  at rest with 

respect to the magnetic feld  will explain the orce acting 

on the charge (and its acceleration)  in terms o a magnetic 

orce (F
M
 =  Bqv)  that acts on the moving charge.

stationary

magnetic eld  into  paper

initia l  force  on  moving

charge is  magnetic

   

  
 

  

moving 

charge

X X X X

X X X X

X X X X

An observer in a rame o reerence that is  at rest with 

respect to the charge  will explain the initial orce acting 

on the charge (and its initial acceleration)  in terms o 

an induced electric orce that results rom the cutting o 

magnetic fux.

   

   

  

in itia l  force on  stationary

charge is  electric
stationary  

charge

moving magnetic eld

 

X X X X

X X X X

X X X X

b)  Two identically charged particles moving with parallel 

velocities according to a laboratory rame o reerence.

An observer in a rame o reerence that is  moving with 

the charged particles  will see the particles at rest.  Thus 

this observer sees the orce o repulsion between the two 

charges as solely electrostatic in nature.

+q

+q

FE

force between  2  stationary  charges is  electrostatic

        

   

FE

  

  

An observer in a rame o reerence where the laboratory 

is at rest  will see the total orce between the two charges 

as a combination o electrostatic and magnetic.  Moving 

charges are currents and thus each moving charge creates 

its own magnetic eld which is  stationary in the laboratory 

rame.  Each charge is moving in the others  stationary 

magnetic eld and will experience a magnetic orce.

      

force  between  2  moving objects is  a  combination  

of electric and  magnetic

+q

+q

FE  & FM

FE  & FM
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s  rtt

pOsTulaTes Of special RelaTiviTy

The special theory o relativity is  based on two undamental 

assumptions or postulates.  I either o these postulates could 

be shown to be wrong,  then the theory o relativity would be 

wrong.  When discussing relativity we need to be even more 

than usually precise with our use o technical terms.

One important technical phrase is  an inertial frame of 

reference.  This means a rame o reerence in which the laws 

o inertia (Newtons laws)  apply.  Newtons laws do not apply in 

accelerating rames o reerence so an inertial rame is a rame 

that is  either stationary or moving with constant velocity.  

An important idea to grasp is that there is no undamental 

dierence between being stationary and moving at constant 

velocity.  Newtons laws link orces and accelerations.  I there is  

no resultant orce on an object then its acceleration will be zero.  

This could mean that the object is  at rest  or it could mean that 

the object is  moving at constant velocity.

The two postulates o special relativity are:

   the speed o light in a vacuum is the same constant or all 

inertial observers

  the laws o physics are the same or all inertial observers.

The rst postulate leads on rom Maxwells equations and 

can be experimentally veried.  The second postulate seems 

completely reasonable  particularly since Newtons laws do 

not dierentiate between being at rest and moving at constant 

velocity.  I both are accepted as being true then we need to start 

thinking about space and time in a completely dierent way.  I 

in doubt,  we need to return to these two postulates.

simulTaneiTy

One example o how the postulates o relativity disrupt our 

everyday understanding o the world around us is the concept 

o simultaneity.  I two events happen together we say that they 

are simultaneous.  We would normally expect that i two events 

are simultaneous  to one observer,  they should be simultaneous 

to all observers  but this is not the case!  A simple way to 

demonstrate this is to consider an experimenter in a train.

The experimenter is  positioned exactly  in the middle o a 

carriage that is  moving at constant velocity.  She sends out 

two pulses o light towards the ends o the train.  Mounted at 

the ends are mirrors that refect the pulses back towards the 

observer.  As ar as the experimenter is  concerned,  the whole 

carriage is at rest.  Since she is in the middle,  the experimenter 

will know that:

  the pulses were sent out simultaneously

  the pulses hit the mirrors simultaneously

  the pulses returned simultaneously.

pulses leave

together

pulses arrive

at  mirrors

together

pulses return

together

The situation will seem very dierent i watched by a stationary 

observer (on the platorm) .  This observer knows that light must 

travel at constant speed  both beams are travelling at the same 

speed as ar as he is concerned,  so they must hit the mirrors 

at dierent times.  The let-hand end o the carriage is moving 

towards the beam and the right hand end is moving away.  This 

means that the refection will happen on the let-hand end rst.

pulses leave together

1st  pulse hits back wal l

2nd  pulse  hits front  wal l

pulses arrive together

Interestingly,  the observer on the platorm does see the beams 

arriving back at the same time.  The observer on the platorm 

will know that:

  the pulses were sent out simultaneously

  the let-hand pulse hit the mirror beore the right-hand 

pulse

  the pulses returned simultaneously.

In general,  simultaneous events that take place at the same 

point in space will be simultaneous to all observers whereas 

events that take place at dierent points in space can be 

simultaneous to one observer but not simultaneous to another!

Do not dismiss these ideas because the experiment seems too 

anciul to be tried out.  The use o a pulse o light allowed us 

to rely on the rst postulate.  This conclusion is  valid whatever 

event is  considered.
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lort trorto

lORenTz facTOR

The ormulae  or special relativity all  involve  a  actor 

that depends  on the  relative  velocity between dierent 

observers,  v.

We defne the Lorentz actor,    as ollows:

  =     
1
 _ 

    1  -    
v
2

 _ 
c
2
     

  

At low velocities,  

the Lorentz actor is  

approximately equal 

to one  relativistic 

eects are negligible.  It 

approaches infnity near 

the speed o light.

lORenTz TRansfORmaTiOns

An observer defnes a rame o reerence and dierent events  

can be characterized by dierent coordinates according to the 

observers measurements o space and time.  In a rame S,  an event 

will be associated with a given position (x,  y and z coordinates)  

and take place at a given time (t) .  Observers in relative uniorm 

motion disagree on the numerical values or these coordinates.

The Galilean transormations equations (page 1 31 )  allowed 

us to calculate what an observer in a second rame will record 

i we know the values in one rame but assume that the 

measurement o time is  the same in both rames.  Einstein has 

shown that this is  not correct.

y

y

frame S  ( stationary)

frame S

velocity  v

x

x

y

frame S  

(x,  y ,  z,  t)

(x,  y,  z,  t)

x

y

frame S

velocity  v

x

time  =  t time  =  t

clock in  frame S  and  clock in  frame S  are synchronized

to t  =  t  =  zero when frames coincide.

( two frames on  top of one another)

Because the rames were synchronized,  the observers agree 

on the measurements o y and z.  To switch between the other 

measurements made by dierent observers we need to use the 

Lorentz transormations.  These all involve the Lorentz actor,  ,  as 

defned above.  The derivation o these equations is not required.

x'  =  (x -  vt) ;  x'  =   (x -  vt) ;

t'  =    (  t -   vx _ 
c2
    )  ;  t'  =    ( t -    vx

 
____ 
c
2
   )  

The reverse transormations also apply.  These are just a 

consequence o the relative velocity o rame S  (with respect 

to rame S ' )  being in the opposite direction.

x =  (x'  +  vt') ;  t =   (  t'  +    
vx'
 
_ 
c
2
    )  

lORenTz TRansfORmaTiOn  eXample

We can apply the  Lorentz transormation equations  to  the 

situation shown on page  1 33 .  Suppose  the  experiment on 

the  train measures  the  carriage  to  be  50.0  m long and the 

observer on the  platorm measures  the  speed o the  train 

to  be  2 .7    1 08  m s- 1  (0.90  c)  to  the  right.  In this  situation,  

we know the  times  ( t)  and locations  (x)  are  measured 

according to  the  experimenter on the  train ( rame S)  and 

the  experimenter on the  platorm is  rame S' .

1 .  According to the experimenter on the train ( rame S) ,  

Time taken or each pulse to reach mirror at end o 

carriage is given by:

t =    25 .0
 _ 

3.0  108
    =  8.33   10- 8  s

Total time taken or each pulse to complete the round 

journey to the experimenter is:

t
to ta l

 =     
50.0
 _ 

(3.0 108)
    = 1 .67  10- 7  s

2 .  According to the experimenter on the platorm (rame S') ,  

 =    
1
 _ 

    1  -    
v
2

 _ 
c
2
     

    =     1
 __  

    1  -   
(0.9c) 2
 _ 

c
2
      

    

 =    1
 __ 

    1  - 0.81   
    =     1

 _ 
    0.19  

    =  2 .29

Time taken or LH pulse to reach mirror at end o carriage 

is  given by:

t'
(LH pu lse)

  =     (  t -          )  

where t =  8.33   10- 8  s,  v =  -2.7  108  m s- 1 (relative 

velocity o platorm is moving to the let)  and x = -25.0 m 

(pulse moving to let)

 t'
(LH pulse)

 =  2 .29  (8.33   10- 8  -    
(-2.7  108)    (-25.0)

   ___  
(3.0   1 08) 2

     )  
 =  1 .91   10- 7  -  1 .72    10- 7  

 =  1 .9   10- 8  s  

Time taken or RH pulse to reach mirror at end o carriage 

is  given by:

t'
(RH pulse)

 =   (t -          )  
 =  2 .29  (  8.33   10- 8  -    

(-2.7   108)    25 .0
  __  

(3.0   1 08) 2
    )  

 =  1 .91   10- 7  +  1 .72    10- 7  =  3 .63    10- 7  s

Note that the time taken by each pulse is different  they do not arrive 

simultaneously according to the experimenter on the platform.

The return time or the LH pulse is  the same as the time 

taken or the RH to initially reach the mirror ( in each 

case,  x =  25 .0 m and t =  8.33    1 0- 8  s)

So total time taken or LH pulse to return to centre o 

carriage is

 total time'  
( LH pu lse)

  =  1 .9    10- 8  +  3 .63    10- 7  =  3 .82    1 0- 7  s

This is  the same as the total time taken or the RH pulse so 

both experimenters observe the return o the pulses to be 

simultaneous.

Check:  The above calculates that or rame S' ,  the total 

time taken or the round trip is  3 .82   10- 7  s.  The Lorentz 

transormation,  can also be applied to the pulses journey.  

In this situation,  x ( in rame S)  =  0  as the pulse returns 

to its starting position.

total   t'   
( eith er pu lse )

  =     (  t -          )   =  t 

 =  2 .29   1 .67   10- 7  =  3 .82    10- 7  s

Lo
re

n
tz

 fa
ct
o
r,
 

4

3

2

1

speed  of l ight,  c

speed,  v

vx

c
2

vx

c
2

vx

c
2
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velOciTy addiTiOn

When two observers measure each others velocity,  they will always agree on the 

value.  The calculation o relative velocity is  not,  however,  normally straightorward.  

For example,  an observer might see two objects approaching one another,  as  shown 

below.

person  A stationary  observer,  C
(rst  frame S)

velocity  =  0 .7c

person  B
(second  frame S)

velocity  =  0 .7c

I each object has a relative velocity o 0.7  c,  the Galilean transormations would 

predict that the relative velocity between the two objects would be 1 .4 c.  This cannot 

be the case as the Lorentz actor can only be worked out or objects travelling at less 

than the speed o light.  

The situation considered is one rame moving relative to another rame at velocity v.

y frame S  ( stationary)

x

y frame S (moving)

velocity  v

x

Application o the Lorentz transormation gives the equation used to move between 

rames:

u'  =     
u  -  v
 _ 

1 -    
uv
 _ 

c2
  
  

u'    the velocity under consideration in the x-direction as measured in the 

second rame,  S'

u    the velocity under consideration in the x-direction as measured in the 

frst rame,  S

v   the velocity o the second rame,  S' ,  as  measured in the frst rame,  S

In each o these cases,  a positive velocity means motion along the positive 

x-direction.  I something is moving in the negative x-direction then a negative 

velocity should be substituted into the equation.

Example
In the example above,  two objects approached each other with 70%  o the speed o 

light.  So u  is  person As velocity as measured in person Bs rame o reerence.

u'  =  relative velocity o approach  to be calculated

u  =  0.7  c

v =  -0.7 c

u'  =    
1 .4 c
 _ 

(1 +  0.49)
     note the sign in the brackets

 =    
1 .4 c
 _ 

1.49
  

 =  0.94 c

cOmpaRisOn wiTh  Galilean 

equaTiOn

The top line o the relativistic addition 

o velocities equation can be compared 

with the Galilean equation or the 

calculation o relative velocities.

u'  =  u  -  v

At low values o v these two equations 

give the same value.  The Galilean 

equation only starts to ail at high 

velocities.

At high velocities,  the Galilean 

equation can give answers o greater 

than c,  while the relativistic one always 

gives a relative velocity that is  less than 

the speed o light.

vot  to
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irt tt

spaceTime inTeRval

Relativity has shown that our Newtonian ideas o space 

and time are incorrect.  Two inertial observers will generally 

disagree on their measurements o space and time but they 

will agree on a measurement o the speed o light.  Is  there 

anything else upon which they will agree?

In relativity,  a good way o imagining what is  going on is to 

consider everything as dierent events  in something called 

spacetime.  From one observers point o view,  three  

co-ordinates (x,  y  and z)  can defne a position in space.  One 

urther coordinate  is  required to defne its position in 

time (t) .  An event is  a given point specifed by these our 

coordinates (x,  y,  z,  t) .

As a result o the Lorentz transormation,  another observer 

would be expected to come up with totally dierent numbers 

or all o these our measurements  (x',  y' ,  z',  t') .  The amazing 

thing is that these two observers will agree on something.  This 

is  best stated mathematically:

(ct) 2  - x2  -  y2  -  z2  = (ct ') 2  - x   '2  -  y '2  -  z2

On normal axes,  Pythagorass theorem shows us that the 

quantity  
__________
  (x2

 + y2
 +  z2 )    is  equal to the length o the line rom 

the origin,  so (x2
 + y2

 +  z2 )  is  equal to ( the length o the line)  2 .  

In other words,  it is  the separation in space.

(Separation in space) 2  =  (x2  +  y2  +  z2 )  

l2  =  x2  +  y2  +  z2

z
l

y

x

The two observers agree about something very similar 

to this,  but it includes a coordinate o time.  This can be 

thought o as  the separation in imaginary our-dimensional 

spacetime.  

(Separation in spacetime) 2  =  (ct) 2  -  x2  -  y2  -  z2

or

(Separation in spacetime) 2  

 =  (time separation) 2  -  ( space separation) 2

In 1  dimension,  this is  simplifed to 

(ct') 2  -  (x') 2  = (ct) 2  -  (x) 2

OTheR invaRianT quanTiTies

In addition to the spacetime interval between two events (see 

box above) ,  all observers agree on the values o three other 

quantities associated with the separation between two events 

or with reerence to a given object.  These are:

  Proper time interval t
0

  Proper length L
0

  Rest mass m
0

These our quantities are said to be invariant  as they 

are always constant and do not vary with a change o 

observer.  There are additional quantities,  not associated with 

mechanics,  that are also invariant e.g.  electric charge.

pROpeR Time,  pROpeR lenGTh & ResT mass

a)  Proper time interval t
0

When expressing the time taken between events ( or 

example the length o time that a frework is giving out 

light) ,  the proper time  is  the time as measured in a 

rame where the events take place at the same point in 

space.  It turns out to be the shortest possible time that any 

observer could correctly record or the event.  

Clock that  is  stationary  with  the  
rework measures the proper 
time for which  it  lasted.

measuring how long a  rework lasts

Moving frame measures a  
longer time for the rework 
since in  this frame the
rework is  moving.

I A is moving past B  then B  will think that time is 

running slowly or A.  From As point o view,  B  is  moving 

past A.  This means that A will think that time is running 

slowly or B.  Both views are correct!

b)  Proper length L
0

As beore,  dierent observers will come up with 

dierent measurements or the length o the same object 

depending on their relative motions.  The proper length  

o an object is  the length recorded in a rame where the 

object is  at rest.

Ruler that  is  stationary  with  the  
rework measures the  proper length  
for its  d iameter.

Moving frame measures 
a  shorter length  for the  
reworks d iameter since 
the  rework is  moving
in  this  frame.

c)  Rest mass m
0

The measurement o mass depends on relative 

velocity.  Once again it is  important to distinguish the 

measurement taken in the rame o the object rom all 

other possible rames.  The rest mass o an object is  its 

mass as measured in a rame where the object is  at rest.  

A particles rest mass does not change.
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deRivaTiOn  Of The effecT fROm fiRsT 

pRinciples

I we imagine a stationary observer with one light clock then 

t is  the time between ticks  on their stationary clock.  In this 

stationary frame,  a moving clock runs slowly  and t'  is  the 

time between ticks  on the moving clock:  t'  is  greater than t.

l
l

l

vt 

In the time t',  

the clock has moved on a distance =  v t'

Distance travelled by the light,  l'  =   
_________
  ((vt') 2  +  l2 )   

 t'  =     
l'
 _ 

c
  

 =    
 
________
 (vt') 2  +  l2   
  __ 

c
  

 t'2  =    
v2t'2  +  l2
 _ 

c2
  

  t'2  (1  -   v
2

 _ 
c2
   )   =    

l2
 _ 

c2
  

but    
l2
 _ 

c2
   =  t2

 t'2  (1  -    
v2

 _ 
c2
   )   =  t2

or  t'  =    1
 _ 

 
______

 1  -    
v2

 _ 
c2
    

       t or t'  =  t

This equation is true or all measurements o time,  whether 

they have been made using a light clock or not.

deRivaTiOn  Of effecT fROm lORenTz 

TRansfORmaTiOn

I rame  S  is  a  rame  where  two events  take  place  at the  

same  point in space,  then the  time  interval between these  

two events  must be  the  proper time  interval,   t
0
.   

Time  dilation is  then a  direct consequence  o the  Lorentz 

transormation:

 t'  =     ( t -    x
 _ 

c2
   )  

Where   t =   t
0
,  ( the  proper time  interval)  and x =  zero  

( same  point in space)

 time  interval in rame  S' ,   t'  =   t
0

T to

liGhT clOck

A light clock  is  an 

imaginary device.  A beam 

o light bounces between 

two mirrors  the time 

taken by the light between 

bounces is  one tick  o the 

light clock.  

As shown in the derivation 

the path taken by light in 

a light clock that is  moving 

at constant velocity is  

longer.  We know that 

the speed o light is  fxed 

so the time between the 

ticks  on a moving clock 

must also be longer.  This 

eect  that moving clocks 

run slow  is  called time 

dilation.

The time between bounces 

t
0  
is  the proper time or 

this clock in the rame 

where the clock is at rest.

l

tick

tick

tick

pulse  leaves bottom mirror

pulse  bounces o top mirror

pulse returns to  bottom mirror
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effecT Of lenGTh cOnTRacTiOn

Time is not the only measurement that is aected by relative motion.  There is another 

relativistic eect called length contraction.  According to a (stationary)  observer,  the 

separation between two points in space contracts i there is relative motion in that 

direction.  The contraction is in the same direction as the relative motion.

moving frame

Length  contracts a long direction  
of motion when  compared  
with  stationary  frame.

stationary  frame

Length contracts by the same proportion as time dilates  the Lorentz actor is  

once again used in the equation,  but this time there is a division rather than a 

multiplication.

L  =     
L

0
 _ 


  

eXample

An unstable particle has a lietime o 

4.0   1 0- 8  s  in its own rest rame.  I it is  

moving at 98%  o the speed o light calculate:

a)  Its lietime in the laboratory rame.

b)  The length travelled in both rames.

a)    =   
_________

    
1
 __ 

1  -  (0.98) 2
    

 =  5 .025

 t =  t
0

 =  5 .025    4.0   1 0- 8

 =  2 .01    1 0- 7  s

b)   In the laboratory rame,  the particle moves

 Length =  speed   time

 =   0.98   3    1 08    2 .01    1 07

 =  59.1  m

  In the particles rame,  the laboratory 

moves

 l =    59.1  _ 

  

 =  1 1 .8 m

 (alternatively:  length =  speed   time

 =  0.98   3    1 08    4.0   1 0- 8

 =  1 1 .8 m)

deRivaTiOn  Of lenGTh cOnTRacTiOn  fROm lORenTz TRansfORmaTiOn

When we measure the length o a moving object,  then we are 

recording the position o each end o the object at one given 

instant o time according to that rame o reerence.  In other 

words the time interval measured in rame S between these two 

events will be zero,  t = 0.  In this case,  the length measured x 

is  the length o the moving object L
0
.  

Length contraction is  then a direct consequence o the 

Lorentz transormation,  as,  i we  move into the rame,  S' ,  

where  the  object is  at rest,  we  will be  measuring the proper 

length L
0
:

x'  = (x - vt)

Where x'  = L
0
 ( the proper length)  and 

t = zero (simultaneous measurements o position o end o object)

   Length in rame S' ,  L
0  
= (L)

 L =   
L

0
 _ 


  

lgt otrto    to ort    

rtty

The muOn eXpeRimenT

Muons are leptons ( see page 78)   they can be thought o as 

a more massive version o an electron.  They can be created in 

the laboratory but they quickly decay.  Their average lietime is 

2 .2    1 0- 6  s  as  measured in the rame in which the muons are 

at rest.

Muons are also created high up (1 0 km above the surace)  in 

the atmosphere.  Cosmic rays rom the Sun can cause them 

to be created with huge velocities  perhaps 0.99  c.  As they 

travel towards the Earth some o them decay but there is  still a 

detectable number o muons arriving at the surace o the Earth.

shower of 
particles

cosmic rays from Sun

Earth
some muons 
reach  surface

some muons decay  
before  reaching surface

atmosphere
10  km

Without relativity,  no muons would be expected to reach the 

surace at all.  A particle with a lietime o 2 .2    1 0- 6  s  which 

is travelling near the speed o light (3    1 08  m s- 1 )  would be 

expected to travel less than a kilometre beore decaying  

(2 .2    1 0- 6    3    1 08  =  660 m) .

The moving muons are eectively moving clocks.  Their high 

speed means that the Lorentz actor is  high.

  =   
________

   
1
 _ 

1  -  0.992
      =  7.1

Thereore an average lietime o 2 .2    1 0- 6  s  in the muons  

rame o reerence will be time dilated to a longer time as ar 

as a stationary observer on the Earth is concerned.  From this 

rame o reerence they will last,  on average,  7.1  times longer.  

Many muons will still decay but some will make it through to 

the surace  this is  exactly what is  observed.

In the muons  rame they exist or 2 .2    1 0- 6  s  on average.  

They make it down to the surace because the atmosphere (and 

the Earth)  is  moving with respect to the muons.  This means 

that the atmosphere will be length-contracted.  The 1 0 km 

distance as measured by an observer on the Earth will only 

be   1 0  ___ 
7.1

   =  1 .4 km.  A signifcant number o muons will exist long 

enough or the Earth to travel this distance.  
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spaceTime diaGRams

Spacetime separation was introduced on page 1 36.  A spacetime 

diagram is  a visual way of representing the geometry.   

Measurements can be taken from the diagram to calculate 

actual values.

We cannot represent all four dimensions on the one diagram,  

so we usually limit the number of dimensions of space that 

we represent.  The simplest representation has only one 

dimension of space and one of time as shown below.

ti
m
e

space

particle  at  rest

particle  with  constant  speed

particle  which  starts fast  
and  then  slows down

An object (moving or stationary)  is  always represented as a 

line in spacetime.

Note that:

  The values on the spacetime diagram are as would be 

measured by an observer whose worldline is  represented 

by the vertical axis.

  The vertical axis in the above spacetime diagram is time 

t.  An alternative is to plot (speed of light   time) ,  ct.  This 

means that both axes can have the same units (m,  light-

years or equivalent) .

  Whatever axes are being used,  by convention,  the path of a 

beam of light is  represented by a line at 45  to the axes.  

  The advance of proper time for any traveller can be 

calculated from the overall separation in spacetime.   In the 

travellers frame of reference,  they remained stationary so 

the separation between two events can be calculated as 

shown below.

eXample 1  Of spaceTime diaGRams

The advance of proper time for the journey between the 

events ABCD can be calculated from the values on the  

spacetime diagram.

A journey through spacetime

time/yr

C

D

B

A

l ight

space/ly

1

1

2

3

4

5

6

1 0.5 2 3 4

Journey Space separation  

(x)/ly
Time separation  

(t)/yr
(Spacetime separation) 2  

(ct) 2  -  (x) 2/ly2

Advance of proper time according to 

traveller /  yr

t'  =  
_________

    
(ct) 2  -  (x) 2
 _ 

c
    

AB 0.0 1 .0 1 2  -  02   = 1  
____
 1 .00   = 1 .00

BC 1 .5 2.0 4   2 .25  =  1 .75  
____
 1 .75    =  1 .32

CD 2.5 3.0 9 -  6.25  =  2 .75  
____
 2.75    =  1 .66

The total advance of proper time for the traveller is  1 .00 +  1 .32  +  1 .66 =  3 .98 yr.  This compares with the advance of 6.0 years 

according to an observer whose worldline is a vertical line on this spacetime diagram.  This difference is  an example of time 

dilation  ( see page 1 37) .

The alternative journey direct from A  D shows a greater elapsed proper time.

Journey Space separation  

(x)/ly
Time separation 

(t)/yr
(Spacetime separation) 2   

(ct) 2  -  (x) 2/ly2

Advance of proper time according to traveller /  yr 

t'  =  
_________

    
(ct) 2  -  (x) 2
 _ 

c
    

AD 1 .0 6.0 36 -  1  =  35  
___
 35    = 5.92

This is  always true.  A direct worldline always has a greater amount of elapsed proper time than an indirect worldline.

st gr (mnkowk  gr)  1
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calculaTiOn  Of Time dilaTiOn  and 

lenGTh cOnTRacTiOn

Time dilation and  length contraction  

are quantitatively represented on spacetime 

diagrams.  Refer to diagram on page 1 39.

a)  Time dilation:  In the journey direct 

from B   C,  the relative velocity between 

the traveller and the stationary observer 

is    
1 .5  ly
 

_____
 

2.0 yrs
    =  0.75  c.  The Lorentz gamma 

factor is:  

  =    1
 
_
 

 
______

 1  -   v
2

 
_
 

c
2
    

    =   1
 

__
  

 
________
 1  -  0.752    

   = 1 .51

The journey takes 2  yrs according to the 

observer at rest.  This means the proper time as 

measured by the traveller will be:  

t = t
0  
 t

0  
=   t

 
_

 

   =    2.0 _ 

1 .51
   =1 .32  yr 

as shown in the table on page 1 39.

b)  Length contraction:  The observer at rest 

measures the journey length from BC 

to be 1 .5   ly.  The journey will be length 

contracted to be 

L =   
L

0

 
_

 

   =    1 .5  _ 

1 .51
   = 0.99 ly 

The relative velocity of travel is  0.75  c,  and 

the time taken to go from from B   C,  in 
the travellers frame of reference,  is  1 .32  yr.  

This makes the distance according to the 

traveller to be 0.75  c   1 .32  yr =  0.99 ly as 
shown above.

eXample 2   cuRved wORldline

time

space

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 13
B

O

12

11

10

9

8

7

increase in

proper time

6

5

4

3

2

1

2 3 4 5 6 7 8 9 10

= -






advance

in  time











increase

in  space

22 1
2





Proper time along a curved worldline from event O  to event B  is  smaller 

than the proper time along the straight line from O to B.

st gr 2

As mentioned on page 1 36,  the theory of relativity gives no 

preference to different inertial observers  the time dilation 

effect (moving clocks run slowly)  is  always the same.  This 

leads to the twin paradox .  In this imaginary situation,  two 

identical twins compare their views of time.  One twin remains 

on Earth while the other twin undergoes a very fast trip out to a 

distant star and back again.  

As far as the twin on the Earth is  concerned the other twin is a 

moving observer.  This means that the twin that remains on the 

Earth will think that time has been running slowly for the other 

twin.  When they meet up again,  the returning twin should 

have aged less.

before

 

after

This seems a very strange prediction,  but it is  correct according 

to the time dilation formula.  Remember that:

  This is  a relativistic effect  time is running at different rates 

because of the relative velocity  between the two twins and 

not  because of the distance  between them.

  The difference in ageing is relative.  Neither twin is getting 

younger;  as far as both of them are concerned,  time has been 

passing at the normal rate.  Its  just that the moving twin 

thinks that she has been away for a shorter time than the 

time as recorded by the twin on the Earth.

The paradox is that,  according to the twin who made the 

journey,  the twin on the Earth was moving all the time and so 

the twin left on the Earth should have aged less.  Whose version 

of time is  correct?

The solution to the paradox comes from the realization that the 

equations of special relativity are only symmetrical when the 

two observers are in constant relative motion.  For the twins to 

meet back up again,  one of them would have to turn around.  

This would involve external forces and acceleration.  If this is  the 

case then the situation is  no longer symmetrical for the twins.  

The twin on the Earth has not accelerated so her view of the 

situation must be correct.

The resolution of the twin paradox using a spacetime diagram is  

on page 141 .

T t  rox 1
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ResOlvinG The Twin  paRadOX usinG spaceTime 

diaGRams

The diagram below is a spacetime diagram or a journey to a 

distant planet ollowed by an immediate return.   

According to the twin remaining on Earth:

  the distance to the planet =  3 .0 ly

  relative velocity o traveller is  0.6  c

  each leg o the journey takes    
3 .0
 

___
 

0.6
   =  5 .0 yr

  Total journey time =  1 0.0 yr

The gamma actor is  

 =    1
 
_
 

 
______

 1  -   v
2

 
_
 

c
2
      

     =   1
 

__
 

 
_______
 1  - 0.62
  
 

  
  = 1 .25

So according to the twin undertaking the journey:

  each leg o the journey takes    
5 .0
 

____
 

1 .25
   =  4 .0 yr

  Total journey time =  8.0 yr

  the distance to the planet =    
3 .0
 

____
 

1 .25
   =  2 .4 ly

  relative velocity o Earth =    
4.8
 

___
 

8.0
   =  0.6  c

In order to check whose version o time is correct,  they agree 

to send light signals every year.  The spacetime diagram or 

this situation in the Earths rame o reerence is shown below 

(let) .

Note that there is  no paradox;  they agree on the number o 

signals sent and received;  the travelling twin has aged less than 

the twin that stayed on Earth.  

A more complicated spacetime diagram can be drawn or the 

reerence rame o the outbound traveller (below right) .  Note that:

  The frst our years has the travelling twins worldline 

vertical i.e.  stationary.

  When the travelling twin turns round,  she leaves her 

original rame o reerence and changes to a rame where 

the Earth is moving towards her at   
3
 

__
 

5
   c (=  0.6  c) .

  Her relative velocity towards the Earth with respect to 

her original rame o reerence can be calculated rom the 

velocity transormation equations as   
1 5
 

__
 

17
   c (=  0.88 c)  back.

  In this rame o reerence,  the total time or the round trip 

would be measured as 1 2.5  yr

t  ( yr)

x ( ly)
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3

2
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1.6

2.4
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Earth
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inbound  travel ler
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5
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1
0.8

1.6

Earth
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outbound
traveler
v =  3 /5  c

inbound  traveler
v =  3/5  c

l ight  signals
from Earth

reference frame
of Earth
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3.2
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annual  
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from Earth
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travel ler
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for travel ler

T  rox 2
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RepResenTinG mORe Than One ineRTial fRame 

On  The same spaceTime diaGRam

The Lorentz transformations describe how measurements 

of space and time in one frame can be converted into the 

measurements observed in another frame of reference.   The 

situation in each frame of reference can be visualized by using 

separate spacetime diagrams for each frame of reference  

( see page 141  for examples) .

It is  also possible to represent two inertial frames on the 

same spacetime diagram.  A frame S  (coordinates x'  and 

ct')  is  moving at relative constant velocity +v according to 

a frame S (coordinates x and ct) .  The principles are as follows:

  The same worldline applies to both sets of coordinate axes 

( that is,  to x and ct,  as  well as to x'  and ct') .  

  The Lorentz transformation is made by changing the coordinate 

system for frame S'  rather than the position of the worldline.  

  The spacetime axes for frame S has x and ct at right angles to 

one another as normal.

  The spacetime axes for frame S'  has its  x'  and ct'  axes both 

angled in towards the x =  ct line (which represents a path of 

a beam of light.

  The coordinates of a spacetime event in S are read from the 

x and ct axes directly.

  The coordinates of a spacetime event in S '  are measured by 

drawing lines parallel to the ct'  and x'  axes until they hit the 

x'  and ct'  axes.  

ct'

B

C

D

A

x'

ct

x

l ight

Frame S Frame  S'



1 .  Events A & B  are simultaneous in frame S but are not 

simultaneous in frame S'  (A occurs before B)

  tan   =    
2
 _ 

8
   =  0.25

  relative velocity of frames S  and S =  0.25  c

2.  Events C  & D  occur at same location in frame S' .

Events C  & D  occur at different locations in frame S.

3 .  A pulse of light emitted by event A arrives at event D  

according to both frames of reference.  It cannot arrive at 

events B  or C.

Mathematically for the above process to agree with the Lorentz 

transformation calculations,  the following must apply:

  The angle between the ct'  axis ( the worldline for the origin 

of S')  and the ct axis is  the same as the angle between the x'  

axis and the x axis.  It is:

  =  tan- 1  (   v _ c  )  

  The scales used by the axes in S'  are different to the scales 

used by the axes in S.   

  A given value is represented by a greater length on the ct'  

axis when compared with the ct axis.  

  A given value is represented by a greater length on the x'  

axis when compared with the x axis.

  The ratio of the measurements on the axes depends on the 

relative velocity between the frames.  The equation (which 

does not need to be recalled)  is:

ratio of units    
ct'
 _ 

ct
    =  

______

   
1  +   v

2

 
__ 
c2
  
 _ 

1  -    v
2

 
__ 
c2
  
    

(x',  ct')  =  ( 0,  1)

(x,  ct)  =  (v/c,  )

ct'
ct

x'

x

(x',  ct')  =  ( 1,  0)

(x,  ct)  =  (, v/c)




Summary
  At greater speed:

 the S'  axes swing towards the x =  ct line as the angle   

increases.

 the ct'  and x'  axes are more stretched when compared 

with the ct and x axes.

  Events that are simultaneous in S are on the same horizontal 

line.

  Events that are simultaneous in S'  are on a line parallel to 

the x'  axis.

st gr 3
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E =  mc2

The most amous equation in all o physics is  surely Einsteins 

massenergy relationship E =  mc2 ,  but where does it come 

rom? By now it should not be a surprise that i time and 

length need to be viewed in a dierent way,  then so does 

energy.  

According to Newtons laws,  a constant orce produces a 

constant acceleration.  I this was always true then any velocity 

at all should be achievable  even aster than light.  All we 

have to do is apply a constant orce and wait.  

constant  acceleration

constant  force  velocity  as 
predicted  by  Newtonve

lo
ci
ty

time

speed  of l ight,  c

In practice,  this does not happen.  As soon as the speed o an 

object starts to approach the speed o light,  the acceleration 

gets less and less even i the orce is  constant.

ve
lo
ci
ty

time

speed  of l ight,  c

constant  force  velocity  as 
predicted  by  Einstein

acceleration decreases 
as speed  gets close to  c

The orce is still doing work (=  orce   distance) ,  thereore 

the object must still be gaining kinetic energy and a new 

relativistic equation is  needed or energy:

E =  m
0
c2

Note that some textbooks compare this equation with the 

defnition o rest energy (E
0  
= m

0
c2 )  in order to defne a 

concept o relativistic mass that varies with speed (m = m
0
) .  

The current IB  syllabus does not encourage this approach.

The preerred approach is  to see rest mass as invariant and to 

adopt a new relativistic ormula or kinetic energy:

Total energy =  rest energy +  kinetic energy =  m
0
c2

rest energy =  m
0
c2

so,  kinetic energy E
K
 =  (  -  1 )m

0
c2

mass and eneRGy
Mass and energy are equivalent.  This means that energy can 

be converted into mass and vice versa.  Einsteins massenergy 

equation can always be used,  but one needs to be careul about 

how the numbers are substituted.  Newtonian equations (such 

as KE =    1  __ 
2
   mv2  or momentum =  mv)  will take dierent orms 

when relativity theory is applied.

The energy needed to create a particle at rest is  called the rest 

energy E
0
 and can be calculated rom the rest mass:

E
0
 =  m

0
c2

I this particle is  given a velocity,  it will have a greater total 

energy.   

E =  m
0
c2

m  rgHL
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uniTs

SI units can be applied in these equations.  Sometimes,  

however,  it is  useul to use other units instead.

At the atomic scale,  the joule is  a huge unit.  Oten the 

electronvolt (eV)  is  used.  One electronvolt is  the energy 

gained by one electron i it moves through a potential 

dierence o 1  volt.  Since 

Potential dierence =   
energy dierence

  __  
charge 

  

 1  eV =  1  V   1 .6    1 0- 1 9  C

 =  1 .6    1 0- 1 9  J

In act the electronvolt is  too small a unit,  so the standard SI 

multiples are used

1  keV =  1 000 eV

1  MeV =  1 06  eV  etc.

Since mass and energy are equivalent,  it makes sense to have 

comparable units or mass.  The equation that links the two  

(E =  mc2 )  defnes a new unit or mass  the MeV c- 2 .  The 

speed o light is  included in the unit so that no change o 

number is  needed when switching between mass and energy  

I a particle o mass o 5  MeV c- 2  is  converted completely into 

energy,  the energy released would be 5  MeV.  It would also be 

possible to use keV c- 2  or GeV c- 2  as a unit or mass.

In a similar way,  the easiest unit or momentum is the 

MeV c- 1 .  This is  the best unit to use i using the equation 

which links relativistic energy and momentum.

equaTiOns

The laws o conservation o momentum and conservation 

o energy still apply in relativistic situations.  However the 

concepts oten have to be refned to take into account the new 

ways o viewing space and time.  

For example,  in Newtonian mechanics,  momentum p  is  

defned as the product o mass and velocity.

p =  mv

In relativity it has a similar orm,  but the Lorentz actor needs 

to be taken into consideration.

p =    m
0
 v

The momentum o an object is  related to its total energy.  In 

relativistic mechanics,  the relationship can be stated as 

E2  =  p2c2  +  m
0

2  c4

In Newtonian mechanics,  the relationship between energy 

and momentum is 

E =    
p2

 _ 
2m

  

Do not be tempted to use the standard Newtonian equations  

i the situation is relativistic,  then you need to use the 

relativistic equations.  

eXample

The Large Electron /  Positron (LEP)  collider at the European 

Centre or Nuclear Research (CERN)  accelerates electrons to 

total energies o about 90 GeV.  These electrons then collide 

with positrons  moving in the opposite direction as shown below.  

Positrons are identical in rest mass to electrons but carry a 

positive charge.  The positrons have the same energy as the 

electrons.

Electron



Total energy =  90 GeV

Electron



Total energy =  90 GeV

a)  Use the equations o special relativity to calculate,

( i)  the velocity o an electron (with respect to the 

laboratory) ;

Total energy =  90 GeV =  90000 MeV

Rest mass = 0.5  MeVc- 2     =  18000 (huge)

  v    c

( ii)  the momentum o an electron (with respect to the 

laboratory) .

p2  c2  =  E2  -  m
0

2  c4

  E2

p    90 GeVc- 1

b)  For these two particles,  estimate their relative velocity o 

approach.

  since   so large

  relative velocity   c

c)   What is  the total momentum o the system (the two 

particles)  beore the collision?

  zero

d)  The collision causes new particles to be created.

(i)  Estimate the maximum total rest mass possible or the 

new particles.

  Total energy available =  180 GeV

    max total rest mass possible =  180 GeVc- 2

( ii)  Give one reason why your answer is  a maximum.

  Above assumes that particles were created at rest

 

Rtvtc ot d rgyHL
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Rtvt  xHL

paRTicle acceleRaTiOn  and elecTRic chaRGe

In a particle accelerator (e.g.  a linear accelerator or cyclotron) ,  

charged particles are accelerated up to very high energies.  The 

basic principle is  to pass the charged particles through a series 

of potential differences and each time,  the particles total 

energy increases as a result.  The increase in kinetic energy 

(E
K
)  as a result of a charge q  passing through a potential 

difference V is  given by:  

qV =  E
K

phOTOns

Photons are particles that have a zero rest mass and travel at 

the speed of light,  c.  Their total energy and their frequency f is  

linked by Plancks constant h:

E =  hf

The relativistic equation that links total energy,  E and 

momentum,  p,  must also apply to photons:  

E2  =  p2c2  +  m
0

2c4

The rest mass of a photon is zero so the momentum of a  

photon is:  

p  =    
E
 _ c   =    

hf
 _ c   =    

h
 _ 


  

eXample:  decay Of a piOn

A neutral pion (0)  is a meson of rest mass m
0
 =  1 35.0 MeV c- 2 .   

A typical mode of decay is to convert into two photons:  

0    2

The wavelength of these photons can be calculated:

a)  Decay at rest

If the pion was at rest when it decayed,  each photon would 

have half the total energy of the pion:

E  =  67.5  MeV =  67.5    1 06    1 .6    1 0- 1 9  J 

=  1 .08   1 0- 1 1  J

Plancks constant can be used to calculate the wavelength  

of one of the photons:

E =  h  
c
 _ 

  

  =  h  
c
 _ 
E
   = 6.63    10- 3 4      3.0   10

8

 __  
1 .08   1 0- 1 1

    

    =  1 .84   10- 1 4  m

The momentum of the pion was initially zero as it was at rest.  

Conservation of momentum means that the photons will be 

emitted in opposite directions.  The total momentum of each 

photon add together to give a total,  once again,  of zero.

b)  Decay while moving

Suppose the pion was moving forward when it decayed 

with a total energy 270.0 MeV c- 2 ;  the photons will be 

emitted as shown below:

after photon  1

photon  2

before

pion





Note that in this example,  total energy 2  m  
0
  c 2  ,  so   =  2  so v 

= 0.866 c

Each photon will have a total energy of  

1 35   MeV =  2 .1 6    1 0- 1 1  J

and a momentum of 1 35  MeV c- 1 .  The wavelengths of the 

photons will be:

  = h  c _ 
E
   = 6.63    10- 3 4      3.0    10 8  

 __  
2.16   10- 1 1

   

 =  9.21    1 0- 1 5  m

Initial total momentum for the pion in the forward direction 

can be calculated from 

 E 2   =  p  2   c 2   +  m
0

2   c 4  

 p  2    c 2   =  E 2   -  m
0

2   c 4   = (4 -  1 )m
0

2   c 4  

p  =  
__
 3     m  

0
  c = 1 .73    135.0 = 233.8 MeV c- 1

So conservation of momentum in forward direction is:

233.8 =  2    1 35    cos 

  cos   =    233.8 _ 
270

    = 0.866

     =  30

eXample

An electron is accelerated through a pd of 1 .0   1 06  V.  

Calculate its velocity.

 Energy gained =  1 .0   1 06    1 .6    1 0- 1 9  J

 =  1 .6    1 0- 1 3  J

 E
0
 =  m

0
c2  =  9.1 1    1 0- 3 1    (3    1 08) 2

 =  8.2    1 0- 1 4  J

     Total energy =  1 .6    1 0- 1 3  +  8.2    1 0- 1 4

 =  2 .42    1 0- 1 3  J

     =    
2 .42    1 0- 1 3

  __  
8.2    1 0- 1 4

    =  2 .95

 velocity =   
______

 1  -    1  _ 
2
       c

 =  0.94 c
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pRinciple Of equivalence

One o Einsteins thought experiments  considers how an observers view o the world would change i they were accelerating.  The 

example below considers an observer inside a closed spaceship.  

There are two possible situations to compare.  

  The rocket could be ar away rom any planet but accelerating orwards.  

  The rocket could be at rest on the surace o a planet.

dropped  object  
wi l l  fa l l   
towards oor

accelerating
forward

astronaut  feels a  force when  rocket  is  
accelerating forward

 

astronaut  feels  a  force  when  rocket  is  
at  rest  on  the  surface of a  planet

dropped  

object  wi l l  fa l l  

towards oor

rocket  at  rest

on  planet

planet

Although these situations seem completely dierent,  the observer inside  the rocket would interpret these situations as being 

identical.

This is  Einsteins principle o equivalence   a postulate that states that there is  no dierence between an accelerating rame o 

reerence and a gravitational feld.

From the principle o equivalence,  it can be deduced that light rays are bent in a gravitational feld (see below)  and that time slows 

down near a massive body (see page 147) .

Gr  rtty   t  rHL

bendinG Of liGhT

Einsteins principle o equivalence suggests that a gravitational 

feld should bend light rays!  There is a small window high up in 

the rocket that allows a beam o light to enter.

In both o the cases in diagrams 1  and 2 ,  the observer is  an 

inertial  observer and would see the light shining on the wall at 

the point that is  exactly opposite the small window.  I,  however,  

the rocket was accelerating upwards (see diagram 3)  then the 

beam o light would hit a point on the wall below  the point 

that is  opposite the small window.  

But Einsteins principle o equivalence states that there is  

no dierence between an accelerating observer and inertial 

observer in a gravitational feld.  I this is  true then light should 

ollow a curved path in a gravitational feld as shown in 

diagram 4.  This eect does happen!

1  rocket at  rest
    in  space

window
l ight  hits  
wal l  
opposite  
window

rocket

moves 

upwards at  

constant  

velocity

l ight  hits

wal l  

opposite  

window 

nal  position  of 

window when  

l ight  hits

original  

position  

of window

2  rocket moving with

    constant velocity

nal  position  
of window 
when  
l ight  hits

3   rocket accelerating
   upwards

l ight  hits  
below window 
as rocket  has 
speeded  up

rocket  
accelerating

l ight  hits below 

window in  an  

accelerating 

rocket  and  in  a  

stationary  rocket  

in  a  gravitational  

eld

view

inside

rocket

4  rocket at  rest in  a
     gravitational  eld
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maThemaTics

This gravitational time dilation eect can be mathematically 

worked out or a uniorm gravitational eld g.  The change in 

requency f is  given by 

  
f
 ___ 

f
   =   

gh
 _ 

c2
  

where

f is  the requency emitted at the source

g  is  the gravitational eld strength (assumed to be 

constant)

h is the height dierence and 

c is  the speed o light.

cOncepT

The general theory o relativity makes other predictions that 

can be experimentally tested.  One such eect is  gravitational 

red shift   clocks slow down in a gravitational eld.  In other 

words a clock on the ground foor o a building will run slowly 

when compared with a clock in the attic  the attic is  urther 

away rom the centre o the Earth.  

A clock on  the ground  

oor runs slow when  

compared  with  a  

clock in  the  attic

The same eect can be imagined in a dierent way.  We have 

seen that a gravitational eld aects light.  I light is  shone 

away rom a mass ( or example the Sun) ,  the photons o light 

must be increasing their gravitational potential energy as they 

move away.  This means that they must be decreasing their 

total energy.  Since requency is a measure o the energy o a 

photon,  the observed requency away rom the source must 

be less than the emitted requency.

At  the  top  of the  

bui ld ing,  the  photon  

has less energy,  and  

so  a  lower frequency,  

than  when  it  was at  

the  bottom.

The oscillations o the light can be imagined as the pulses o a 

clock.  An observer at the top o the building would perceive 

the clock on the ground foor to be running slowly.

eXample

A UFO travels at such a speed to remain above one point on 

the Earth at a height o 200 km above the Earths surace.  A 

radio signal o requency o 1 10 MHz is sent to the UFO.

(i)  What is  the requency received by the UFO?

(ii)  I the signal was refected back to Earth,  what would be 

the observer requency o the return signal?  Explain your 

answer.

(i)   f =  1 .1    1 08  Hz

  g  =  1 0 m s2

  h  =  2 .0   1 05m

    f =    
1 0   2 .0   1 05

  __  
(3    1 08) 2

     1 .1    1 08  Hz

  =  2 .4   1 03  Hz

   f received =  1 .1    1 08   2 .4   1 03

   =  1 09999999.998 Hz

     1 .1    1 08  Hz

(ii)   The return signal will be gravitationally blue shited.  

Thereore it will arrive back at exactly  the same 

requency as emitted.

Grvtto  rd  ftHL
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evidence TO suppORT GeneRal RelaTiviTy

Bending of star l ight
The predictions o general relativity,  just like those o special relativity,  seem so strange that we need strong experimental evidence.  

One main prediction was the bending o light by a gravitational eld.  One o the rst experiments to check this eect was done by a 

physicist called Arthur Eddington in 1 919.  

The idea behind the experiment was to measure the defection o light ( rom a star)  as a result o the Suns mass.  During the day,  

the stars are not visible because the Sun is  so bright.  During a solar eclipse,  however,  stars are visible during the ew minutes when 

the Moon blocks all o the light rom the Sun.  I the positions o the stars during the total eclipse were compared with the positions 

o the same stars recorded at a dierent time,  the stars that appeared near the edge o the Sun would appear to have moved.

not  to  scale!Earth

Moon

Sun

actual  position  of star

apparent  position  
of star

  

usual  position  of star in  sky  
( compared  with  others)

apparent  position  
during ecl ipse

The angle o the shit o these stars turned out to be exactly the angle as predicted by Einsteins general theory o relativity.

Gravitational  lensing
The bending o the path o light or the warping o spacetime (depending on which description you preer)  can also produce some 

very extreme eects.  Massive galaxies can defect the light rom quasars (or other very distance sources o light)  so that the rays 

bend around the galaxy as shown below.

observer

not  to  scale!

massive galaxy

image of quasar

image of quasar

quasar

In this strange situation,  the galaxy is  acting like a lens and we can observe multiple images o the distant quasar.

evidence TO suppORT GRaviTaTiOnal Red shifT

PoundRebkaSnider experiment
The decrease in the requency o a photon as it climbs out 

o a gravitational eld can be measured in the laboratory.  

The measurements need to be very sensitive,  but they have 

been successully achieved on many occasions.  One o the 

experiments to do this was done in 1 960 and is called the 

PoundRebka  experiment.  The requencies o gamma-ray 

photons were measured ater they ascended or descended 

Jeerson Physical Laboratory Tower at Harvard University.

The original PoundRebka  experiment was repeated with 

greater accuracy by Pound and Snider.

Atomic clock frequency  shift
Because they are so sensitive,  comparing the dierence in 

time recorded by two identical atomic clocks can provide a 

direct measurement o gravitational red shit.  One o the clocks 

is  taken to high altitude by a rocket,  whereas a second one 

remains on the ground.  The clock that is  at the higher altitude 

will run aster.

Global  positioning system
For the global positioning system to be so accurate,  general 

relativity must be taken into account in calculating the details  o 

the satellite' s orbit.

sortg HL
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effecT Of GRaviTy On  spaceTime

The Newtonian way o describing gravity is in terms o the 

orces between two masses.  In general relativity the way o 

thinking about gravity is not to think o it as a orce,  but as 

changes in the shape (warping)  o spacetime.  The warping o 

spacetime is caused by mass.  Think about two travellers who 

both set o rom dierent points  on the Earths equator and 

travel north.

On  the  surface of the  Earth,  two travel lers 

who set  o paral lel  to  one another

may  eventual ly  meet:

P Q

QP

As they travel north they will get closer and closer together.  

They could explain this coming together in terms o a orce 

o attraction between them or they could explain it as a 

consequence o the surace o the Earth being curved.  The 

travellers have to move in straight lines across the surace o the 

Earth so their paths come together.

Einstein showed how spacetime could be thought o as being 

curved by mass.  The more matter you have,  the more curved 

spacetime becomes.  Moving objects ollow the curvature o 

spacetime or in other words,  they take the shortest path in 

spacetime.  As has been explained,  it is  very hard to imagine 

the our dimensions o spacetime.  It is  easier to picture what is  

going on by representing spacetime as a fat two-dimensional 

sheet.

spacetime represented  by  at  sheet

Any mass present warps (or bends)  spacetime.  The more mass 

you have the greater the warping that takes place.  This warping 

o spacetime can be used to describe the orbit o the Earth 

around the Sun.  The diagram below represents how Einstein 

would explain the situation.  The Sun warps spacetime around 

itsel.  The Earth orbits the Sun because it is  travelling along 

the shortest possible path in spacetime.  This turns out to be a 

curved path.

Earth

Sun

  Mass tells  spacetime how to curve.

  Spacetime tells  matter how to move.

applicaTiOns Of GeneRal RelaTiviTy TO The univeRse as a whOle

General relativity is now undamental to understanding how the objects in the Universe interact with spacetime and thus how they 

aect each other.  This allows ar-reaching predictions to be created about the uture development and ate o the Universe  see 

cosmology sections o the astrophysics option (option D) .

The development o the Universe can be modelled in detail.  Many current aspects (e.g.  its large-scale structure,  the creation o the 

elements and the presence o cosmic background radiation)  are predicted.

Very large mass black holes may exist at the centres o many galaxies.  General relativity predicts how these may interact with matter 

and astronomers are searching or appropriate evidence.

General relativity predicts the existence o gravitational waves associated with high energy events such as the collision o two black 

holes.  Experimental evidence or the existence o these waves is being sought.

crtr o tHL
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descRipTiOn

When a star has used up all o its nuclear uel,  the orce o 

gravity makes it collapse down on itsel (see the astrophysics 

option or more details) .  The more it contracts the greater the 

density o matter and thus the greater the gravitational eld 

near the collapsing star.  In terms o general relativity,  this 

would be described in terms o the spacetime near a collapsing 

star becoming more and more curved.  The curvature o 

spacetime becomes more and more severe depending on the 

mass o the collapsing star.

I the collapsing star is less than about 1 .4 times the mass o the 

Sun,  then the electrons play an important part in eventually 

stopping this contraction.  The star that is let is called a white 

dwar.  I the collapsing star is greater than this,  the electrons 

cannot halt the contraction.  A contracting mass o up to three 

times the mass o the Sun can also be stopped  this time the 

neutrons play an important role and the star that is let is called 

a neutron star.  The curvature o spacetime near a neutron star is  

more extreme than the curvature near a white dwar.

At masses greater than this we do not know o any process that 

can stop the contraction.  Spacetime around the mass becomes 

more and more warped until eventually it becomes so great that 

it olds in over itsel.  What is  let is  called a black hole.  All the 

mass is  concentrated into a point  the singularity.

spacetime with  
extreme curvature

eXample

Calculate the size o a black hole that has the same mass as 

our Sun (1 .99   1 03 0  kg) .

R
S ch
 =    2    6.67   1 0

- 1 1    1 .99   1 03 0

   ___  
(3   1 08) 2

  

 =  2949.6 m

 =  2 .9  km

schwaRzchild Radius

The curvature o spacetime near a black hole is  so  

extreme that nothing,  not even light,  can escape.  Matter  

can be attracted into the hole,  but nothing can get out  

since nothing can travel aster than light.  The gravitational 

orces are so extreme that light would be severely  

defected near a black hole.

photon  sphere black hole

I you were to approach a black hole,  the gravitational orces 

on you would increase.  The rst thing o interest would be 

the photon sphere.  This consists o a very thin shell o light 

photons captured in orbit around the black hole.  As we all 

urther in,  the gravitational orces increase and so the escape 

velocity at that distance also increases.  

pho ton  sph e re  

s in gu la ri ty

even t  h o rizon  

At a particular distance rom the centre,  called the 

Schwarzchild radius,  we get to a point where the escape 

velocity is  equal to the speed o light.  Newtonian mechanics 

predicts that the escape velocity v rom a mass M o radius r is 

given by the ormula

v =   
_____

    
2GM
 
_ 
r
    

I the escape velocity is  the speed o light,  c,  then the 

Schwarzchild radius would be given by

R
S
 =    2GM _ 

c
2
  

It turns out that this equation is also correct i we use 

the proper equations o general relativity.  I we cross the 

Schwarzchild radius and get closer to the singularity,  we would 

no longer be able to communicate with the Universe outside.  

For this reason crossing the Schwarzchild radius is  sometimes 

called crossing the event horizon.  An observer watching an 

object approaching a black hole would see time slowing down 

or the object.

The observed time dilation is worked out rom

t =    
t

0
 _ 

 
______

 1  -    
R

S
 _ 

r
    

  

where r is  the distance rom the black hole.

bk oHL
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1 .  In the laboratory rame o reerence,  a slow moving alpha 

particle travels parallel to stationary metal wire that carries 

an electric current.   In this rame o reerence,  the velocity 

o the alpha particle and the drit velocity o the electrons in 

the wire are identical.   Explain the origin o the orce on the 

alpha particle in the rame o reerence o

a)  The alpha particle [2]

b)  The laboratory [2]

2.  Two identical rockets are moving along the same straight 

line as viewed rom Earth.  Rocket 1  is  moving away rom 

the Earth at speed 0.80 c relative to the Earth  and rocket 2  

is  moving away rom rocket 1  at speed 0.60 c relative to 

rocket 1 .

rocket  1

0.80 c relative

to  Earth

Earth rocket  2

0.60 c relative

to  rocket  1

a)  Calculate the velocity o rocket 2  relative to the Earth,  

using the

(i)  Galilean transormation equation.  [1 ]

( ii)  relativistic transormation equation.   [2]

b)  Comment on your answers in (a) .  [2]

c)  The rest mass o rocket 1  is  1 .0   1 03  kg.  Determine the 

relativistic  kinetic energy o rocket 1 ,  as measured by  

an observer on Earth.  [3]

3.  The spacetime diagram below shows two events,  A and B,  

as observed in a reerence rame S.   Each event emits a light 

signal.

Use the diagram to calculate,  according to rame S,  

a)  The time between event A and event B  [2]

b)  The time taken or the light signal leaving event A to 

arrive at the position o event B.   [2]

c)  The location o a stationary observer who receives the  

light signal rom events A simultaneously with  

receiving the light signal rom event B.  [2]

d)  The velocity o a moving rame o reerence in which 

event A and event B  occurred simultaneously.  [4]

B

A

1

2

3

4

5

6

10 2 3 4 5 6 7
x  / ly

ct  / ly

4.  Relativity and simultaneity

a)  State two postulates o the special theory o relativity.  [2]

Einstein proposed a thought experiment  along the 

ollowing lines.  Imagine a train o proper length 1 00 m 

passing through a station at hal the speed o light.  There 

are two lightning strikes,  one at the ront and one at the 

rear o the train,  leaving scorch marks on both the train 

and the station platorm.  Observer S  is  standing on the 

station platorm midway between the two strikes,  while 

observer T is  sitting in the middle o the train.  Light rom 

each strike travels to both observers.

0.5  c

b)  I observer S  on the station concludes rom his 

observations that the two lightning strikes occurred 

simultaneously,  explain why observer T on the train  

will conclude that they did not  occur simultaneously.  [4]

c)  Which strike will T conclude occurred frst?  [1 ]

d)  What will be the distance between the scorch marks  

on the train,  according to T and according to S?  [3]

e)  What will be the distance between the scorch marks  

on the platform,  according to T and according to S?  [2]

HL

5. In a laboratory experiment two identical particles (P and Q) ,  each 

o rest mass m
0
,  collide.  In the laboratory frame of reference,  

they are both moving at a velocity o 2/3 c.  The situation beore 

the collision is shown in the diagram below.

Beore:

2/3  c 2/3  c

P Q

a)  In the laboratory rame o reerence,

 ( i)  what is  the total momentum o P and Q? [1 ]

 ( ii)    what is  the total energy o P and Q? [3]

 The same collision can be viewed according to Ps frame  

of reference  as shown in the diagrams below.

velocity  =  v

P ( rest) Q

b)  In Ps rame o reerence,

 ( i)  what is  Qs velocity,  v?  [3]

 ( ii)    what is  the total momentum o P and Q? [3]

 ( iii) what is  the total energy  o P and Q? [3]

c)  As a result o the collision,  many particles and photons are 

ormed,  but the total energy o the particles depends on 

the rame o reerence.  Do the observers in each rame o 

reerence agree or disagree on the number o particles and 

photons ormed in the collision? Explain your answer.  [2]

6.  The concept o gravitational red-shit indicates that clocks run 

slower as they approach a black hole.

a)  Describe what is  meant by

(i)  gravitational red-shit.  [2]

( ii)  spacetime.  [1 ]

( iii)  a black hole with reerence to the concept o 

spacetime.  [2]

b)  A particular black hole has a Schwarzschild radius R.  A  

person at a distance o 2R rom the event horizon o the 

black hole measures the time between two events to be 10 s.  

Deduce that or a person a very long way rom the black hole 

the time between the events will be measured as 12  s.  [1 ]

ib questons  opton a  reltvty

       


