Stoichiometry

- Mole to Mole - Use Mole Ratio
- Mole to Mass - Use Mole Ratio then multiply by Molar Mass
- Mass to Mole - Divide by Molar Mass then use Mole Ratio
- Mass to Mass - Divide by Molar Mass, then Mole Ratio, and finally multiply by the other Molar Mass

$2 \mathrm{Al}+3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 3 \mathrm{~Pb}+2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$

- If 6 moles of lead (II) nitrate react with aluminum, how many moles of aluminum nitrate will be yielded?

$2 \mathrm{Al}+3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 3 \mathrm{~Pb}+2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$

- If 6 moles of lead (II) nitrate react with aluminum, how many moles of aluminum nitrate will be yielded?

$$
\begin{gathered}
6 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \left\lvert\, \begin{array}{c}
2 \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \\
\\
=4 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{3} \\
=4 \mathrm{~mol}\left(\mathrm{NO}_{3}\right)_{3}
\end{array}\right.
\end{gathered}
$$

$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$

- If 12 moles of water decomposes, how many grams of oxygen will be yielded?

$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$

- If 12 moles of water decomposes, how many grams of oxygen will be yielded?

$12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$1 \mathrm{~mol} \mathrm{O}_{2}$	$32 \mathrm{~g} \mathrm{O}_{2}$
	$2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$1 \mathrm{~mol} \mathrm{O}_{2}$

Molar Mass of $\mathrm{O}_{2}=2$ atoms $\times 16 \mathrm{~g}=32 \mathrm{~g} / \mathrm{mol}$

$$
=192 \mathrm{~g} \mathrm{O}_{2}
$$

$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O}->\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$

- If 50 grams of iron oxide are yielded, how many moles of water are needed to react with iron?

$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O}->\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$

- If 50 grams of iron oxide are yielded, how many moles of water are needed to react with iron?

$50 \mathrm{~g} \mathrm{Fe}_{3} \mathrm{O}_{4}$	$1 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}$	$4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
	$232 \mathrm{~g} \mathrm{Fe}_{3} \mathrm{O}_{4}$	$1 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}$

Molar Mass of $\mathrm{Fe}_{3} \mathrm{O}_{4}-\mathrm{O}=4$ atoms $\times 16 \mathrm{~g}=64 \mathrm{~g} / \mathrm{mol}$

$$
\mathrm{Fe}=3 \text { atoms } \times 56 \mathrm{~g}=168 \mathrm{~g} / \mathrm{mol}
$$

$$
=232 \mathrm{~g} / \mathrm{mol}
$$

$=0.86 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

$2 \mathrm{Na}+\mathrm{Cl}_{2}->2 \mathrm{NaCl}$

- If 100 grams of sodium react with chlorine gas, how many grams of sodium chloride are yielded?

$2 \mathrm{Na}+\mathrm{Cl}_{2}->2 \mathrm{NaCl}$

- If 100 grams of sodium react with chlorine gas, how many grams of sodium chloride are yielded?

100 g Na	1 mol Na	2 mol NaCl	58.5 g NaCl
	23 g Na	2 mol Na	1 mol NaCl

Molar Mass of $\mathrm{NaCl} \quad \mathrm{Na}=1$ atom $\times 23 \mathrm{~g}=23 \mathrm{~g} / \mathrm{mol}$

$$
\begin{aligned}
\mathrm{Cl}=1 \text { atom } \times 35.5 \mathrm{~g} & =35.5 \mathrm{~g} / \mathrm{mol} \\
& =58.5 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
=254 \mathrm{~g} \mathrm{NaCl}
$$

$\mathrm{HCl}+\mathrm{NaOH}->\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

- If 25 grams of hydrochloric acid react with sodium hydroxide, how many grams of water are yielded?

$\mathrm{HCl}+\mathrm{NaOH}->\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

- If 25 grams of hydrochloric acid react with sodium hydroxide, how many grams of water are yielded?

25 g HCl	1 mol HCl	$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
	36.5 g HCl	1 mol HCl	$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { Molar Mass of } \mathrm{HCl} \begin{array}{l}
\mathrm{H}=1 \text { atom } \times 1 \mathrm{~g}=1 \mathrm{~g} / \mathrm{mol} \\
\mathrm{Cl}=1 \text { atom } \times 35.5 \mathrm{~g}=35.5 \mathrm{~g} / \mathrm{mol} \\
\\
=36.5 \mathrm{~g} / \mathrm{mol}
\end{array}
\end{aligned}
$$

$$
=12.3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \quad \text { Molar Mass of } \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{r}
\mathrm{H}=2 \text { atom } \times 1 \mathrm{~g}=2 \mathrm{~g} / \mathrm{mol} \\
\mathrm{O}=1 \text { atom } \times 16 \mathrm{~g}=16 \mathrm{~g} / \mathrm{mol} \\
=18 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

- How many moles of oxygen are needed to produce 12 moles of carbon dioxide?

$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

- How many moles of oxygen are needed to produce 12 moles of carbon dioxide?

$$
\begin{gathered}
12 \mathrm{~mol} \mathrm{CO}_{2} \\
\hline \\
\hline \mathrm{~mol} \mathrm{O}_{2} \mathrm{~mol} \mathrm{CO}_{2} \\
=20 \mathrm{~mol} \mathrm{O}_{2}
\end{gathered}
$$

$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

- How many moles of propane are needed to produce 12 moles of water?

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

- How many moles of propane are needed to produce 12 moles of water?

$$
\begin{aligned}
& \begin{array}{l|l}
12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} & 1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \\
\hline & 4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{array} \\
& =3 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}
\end{aligned}
$$

$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

- How many grams of propane are needed to produce 13.5 moles of carbon dioxide?

$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

- How many grams of propane are needed to produce 13.5 moles of carbon dioxide?

$13.5 \mathrm{~mol} \mathrm{CO}_{2}$	$1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$	$44 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}$
	$3 \mathrm{~mol} \mathrm{CO}_{2}$	$1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$

Molar Mass of $\mathrm{C}_{3} \mathrm{H}_{8}$

$$
\begin{gathered}
\mathrm{C}=3 \text { atoms } \times 12 \mathrm{~g}=36 \mathrm{~g} / \mathrm{mol} \\
\mathrm{H}=8 \text { atoms } \times 1 \mathrm{~g}=8 \mathrm{~g} / \mathrm{mol} \\
=44 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

$$
=198 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}
$$

